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ABSTRACT 

 

In this study, fatigue behavior of rock was analytically and numerically modeled. For this purpose, three point of 

fatigue bending tests were carried out on Limestone specimens prepared from Urmia mine in Iran. 

Subsequently, the fatigue life and crack growth rate in Limestone were analytically (based on the nonlinear 

fracture mechanics) and numerically (based on finite element method; FEM) were modeled; the stress intensity 

factor of FEM models was calculated by J integral and crack tip opening displacement (CTOD). The obtained 

results showed that although, the analytical approach could fairly predict the fatigue behavior, the fatigue life 

and crack growth rate evaluated from finite element method had higher agreement with experimental data. In 

addition, the best results were obtained from FEM models based on J integral method. 

KEYWORDS: Fatigue life, Fatigue Crack Growth, Nonlinear Fracture Mechanics, Paris Law, Finite Element 

Method 

 

1. INTRODUCTION 

 

Fatigue behavior of rocks has been studied by many researches since 1960. Burdin showed that the fatigue 

strength of a rock depended on its grain size, where fine-grained rocks had the most strength [1]. Haimson and 

Kim illustrated that increasing strain in rocks under cyclic loading was divided into three sections that were 

strain growth, a reducing acceleration, a constant acceleration and finally an enhancing acceleration [2]. In 

addition, Haimson showed that the rate of fatigue crack growth in Granite specimens increased with applying 

higher stress cycles [3]. After that, in order to determine the effect of loading amplitude on the fatigue life of 

rocks [4], the fatigue crack growth in brittle sandstones [5], Dynamic Cumulative damage in brittle materials 

such as rocks [6], nonlinear elastic behavior of sandstone and marble specimens under cyclic loading [7,8], 

microscopic observation of the fractured granite specimens during compressive fatigue test [9], process of 

increasing density of small cracks over time and damage of rocks under cyclic loading [10, 11] and effect of 

cyclic loading on reducing rate of mechanical properties of salt stone [12]. Watanabe and Chen showed the 

growth rate of cracks in granite specimens respectively occurred in three steps that were growing with a low 

speed, a constant speed and a high speed [13]. 

In this study, the fatigue of rock under constant cyclic loading was numerically and analytically modeled. 

For this purpose, some cubic specimens of Limestone (prepared form Urmia mine in Iran) were made and a 

static and a fatigue three point bending test were applied; the fatigue life and crack growth rate in specimens 

were examined. Subsequently, the fatigue behavior of Limestone and crack growth in specimens numerically 

modeled using finite element method and it was analytically modeled using based on nonlinear fracture 

mechanics. In order to validate the obtained results, they were compared by experimentally evaluated data. 

 

2. MATERIALS AND METHODS 

 

In this study, to verify the obtained results from modeling, they were compared by the experimentally 

evaluated data from applying standard tests to Limestone specimens prepared from Urmia Mine in Iran. To 

estimate the mechanical properties of Limestone, a standard uniaxial compressive test was carried out on ten 

cylindrical specimens of Limestone with 110 mm height and 54 mm diameter as shown in Fig.1a. In order to 

determine elastic modulus and Poisson's ratio of the specimens, three strain gages were used. In addition, ten 

cubic specimens with 5*5*20 cm dimensions of Limestone were prepared as shown in Fig. 1b, and then a 

standard three point bending test was applied to them using an Instron universal testing machine (Fig. 2). The 

specimens were located on two-roller supports with 12 cm apart and the force was applied by a rigid cylinder 

with 10 mm in diameter acting on the middle part of the specimen under the displacement rate of 0.5 mm/min 

until the first crack appears in the concretes. To obtain the accurate results, the surface of the specimens was 
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constantly monitored during the experiment by stopping the test and accurate examination using dye penetrate 

technique. 

 

 
Fig. 1. Cylindrical and cubic specimen of Limestone. 

 

In order to determine the fatigue life of rock under constant cyclic loading, a standard fatigue bending test 

was carried out on ten specimens of Limestone using Instron universal testing Machine; the dimensions of the 

fatigue specimens was similar to that of the three point bending test. The frequency of cyclic loading was 1 Hz 

in the sinusoidal waveform. The maximum applied load was 70%, 80% and 90% of the fracture load in the static 

bending test (0.7, 0.8 and 0.9*Fmax). In order to obtain the rate of fatigue crack growth, the generated crack after 

applying static-bending load was taken as the initial crack length.  The minimum load was zero. The crack 

lengths during growth were examined using a special designed microscope. 

 

 
 

Fig. 2. Instron universal testing machine. 

 

3. RESULTS AND DISCUSSION 

 

The scatter of experimentally obtained results was remarkably high. This is common for rocks under 

loading where the flaws vary in size, shape and orientation, causing the strength of rocks to vary from specimen 

to specimen [14]. Weibull statistical approach was used to determine the statistically most probable result. The 

basic assumption in Weibull distribution is that a body of materials has a statistical distribution of noninteracting 
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fractures. If there are N broken specimens of a brittle material that were tested, the fracture probability of ith 

specimen ( )(VF
i

) is equal to: 
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Based on Weibull distribution, the fracture probability of each specimen can be related to the applied stress (σ ) 

as  follows: 
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Where 
0

σ  is a characteristic strength of the materials that it is often defined as the mean strength of material, 

and m is the Weibull modulus measuring the variability of strength of materials; the higher the value of m, the 

less is the materials variability in strength. A double-logarithmic plot of Eq. (2) will give a straight line with 

slope m expressed as follows [14]: 
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Consequently, by formatting Eq. (3) for the compressive strength, bending fracture load, elastic modulus 

and Poisson's ratio, and then by passing the best line through the experimental data using the regression 

approach, the mean value of mechanical properties of Limestone was determined and presented in Table 1 [15]. 

Similar to the static test, the mean value of fatigue life, initial crack length and final crack length prior to 

fracture of Limestone was determined and presented in Table 2. Furthermore, the crack growth rate during the 

fatigue test is shown in Fig. 3. The obtained results showed that the ultimate crack length prior to final fracture 

and fatigue life of the rock specimens decreased by increasing the applied maximum load during the test. 

 

Table 1. Mean value of mechanical properties of Urmia Limestone. 
Mechanical 

properties 

Mean uniaxial compressive 

strength MPa 

Mean elastic modulus 

GPa 

Mean Poisson's 

ratio 

Mean bending fracture 

load KN 

Limestone 118.37 27 0.2 1.78 

 

Table 2. Mean value of results obtained from fatigue test. 
Maximum applied load  KN Mean length of initial crack  

mm 

Mean length of final crack  

mm 

Mean fatigue life 

1.26 6.5 42.75 1185 

1.44 9.5 33.75 490 

1.6 13.5 31.5 135 

 

 
 

Fig. 3. Growth of fatigue crack length in Limestone specimens. 
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4. Analytically Measuring Fatigue Life of rock 

In order to investigate the fatigue behavior of quasi-brittle materials such as rock and concrete, non-linear 

elastic fracture mechanics was used because of the large size of the plastic zone at the tip of the crack. Many 

researchers studied the size effect of samples and tried to use from non-linear elastic fracture mechanics 

(NLFM) and the Paris law for calculating the fatigue behavior. In this study, the fatigue method based on the 

failure of the two-dimensional Subramaniam et al [16-19] was used. 

Based on this method, the speed of crack growth decreases before crack length reaches the critical value 

(
c

a ), subsequently, the speed will increase (Fig. 4).  Thus, the propagation of crack length ( a∆ ) can be 

divided into two stages: deceleration stage and acceleration stage. Subramaniam et al. [19] concluded that the 

deceleration stage could be described by the following equation: 

c

n

aaaaC
N

a
<−=

∆

∆
for             )( 1

01

                                                                                     (4) 

Where a  and 
0

a  are current crack length and initial crack length, respectively. 
1

C  and 
1
n  are calibration 

constants depending on structural geometry, boundary conditions and type of materials and N∆

 

is increment of 

loading cycles. 

The critical crack length ( c
a ), which is defined by the inflection point of the crack length-number of loading 

cycles curve (Fig. 4a), is almost equal to the crack length at the peak monotonic load level [19]. The crack 

growth characteristics in the acceleration stage are governed by the change in stress intensity factor ( K∆ ) 

during each load cycle based on Paris Law [20, 21]: 

 

 

                                                                                      (5) 

 

Where I
K∆  is the mode I stress intensity factor in each cycle ( mmMPa ). 
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Where a  is the crack length, S is the distance between the fulcrums, W and B are the width and thickness of the 

sample, respectively, and P is the applied load. 
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Fig. 4. (a) Increasing crack length versus number of cycles, and (b), the crack growth rate changes during 

increasing crack length [19]. 

 

In order to calculate the critical crack length (
c

a )equal to the turning point of loading cycles-crack length 

curve, the best line passing through the experimentally obtained data using the regression approach was 

determined (Fig. 4) and then 
c

a  was calculated (Table 3). Fig. 5 shows the logarithmic curve of crack growth 

rate ( dNda / ) versus the crack growth ( da ) before the crack length reaches the critical value. 
1

C  and 
1
n  

could be evaluated by passing the best line among the data  presented in Fig. 5 (based on Eq. (4)); the obtained 

results were shown in Table 3. Subsequently, by rewriting Eq. (4) and solving the following integral, the number 

of loading cycles until the critical crack length was calculated (Table 3) [19]. 

∫
−

=

c
a

a ndec

aaC

da
N

0
1)(

01

                                                                                                        (7) 

 

 
 

Fig. 5. Logarithmic curve of crack growth rate versus crack length before the crack length reaches the critical 

value (da is given in mm). 
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Fig. 6. Logarithmic curve of crack growth rate versus mode I stress intensity factor after the crack length 

reaches the critical value (da and k is given in mm and  mMPa  respectively). 

 

In order to evaluate the number of loading cycles until fracture when the crack length is larger than the 

critical value, the stress intensity factor was first calculated using Eq. (6) in each loading cycle, and then the 

logarithmic graph of the stress intensity-crack growth rate was determined as shown in Fig. 6. By passage of a 

best line among the obtained results (Fig .6) using regression approach, 
2

C  and 
2

n  could be evaluated based 

on Eq. (5) as presented in Table 3. Subsequently, by rewriting Eq. (5) for acceleration stage (
c

aa > ) and 

solving the following integral, the number of loading cycles until fracture was calculated (Table 3) [20, 21]. 

∫
∆

=
f

c

a

a
nacc

KC

da
N

2)(
2

                                                                                                            (8) 

Where fa  is the mean final crack length prior fracture. As shown in Table 3, there is fairly good agreement 

between   analytically calculated fatigue life and those experimentally evaluated; at the low cyclic loading, this 

method is more efficient. The error of predicting fatigue life in the acceleration stage of crack growth rate (Nacc) 

is lower than that in the deceleration stage. However, all experimental fatigue lives in the deceleration stage 

(Ndec) are less than those in acceleration stage. 

 

Table 3. Results obtained from analytically modeling fatigue crack growth rate. 
Prediction Error (%)  Fatigue life (cycle)  Material constants  Critical crack 

length 

 (mm)  

Applied 

maximum 

load (KN)  tot
N  

acc
N  

dec
N

  

Exp. 

Result  

Analytical  
2

n  
2

C  
1
n  

1
C  

acc
N 

dec
N

  

1.09 2.3 -12.5 1185 1114  84  1.218  0.0008  -0.52  0.1005  7.25  1.26 

2.86 6.95 -6.9 490 369  135  0.935  0.0024  -0.531  0.1705  15.75  1.44 

11.85 17.75 22.2 135 107 12 1.2 0.003 -0.6  0.3 15 1.6 

 

5. Numerical Fatigue Crack Growth Modeling 

In this study, fatigue crack growth has been simulated using ABAQUS and ZENCRACK software based on 

finite element method (FEM) in three dimensions; with ZENCRACK, in order to analyze  fatigue cracks 

numerically, fracture mechanics parameters (stress intensity factor, KI and energy release rate, ) were obtained 

based on CTOD and Energy methods [23].  The theory of crack tip opening displacement (CTOD) and J integral 

(energy method) were used as described in appendix A [23]. In order to stimulate three-dimensional fatigue crack 

growth numerically, first, uncrack mesh model was generated. For this purpose, the geometry of the specimens 

(Regardless crack) and the bending test conditions were modeled in the finite element software ABAQUS; the 

hexahedron brick elements of quadratic twenty-node (C3D20R) were used (Fig.7). Then, the uncrack mesh model 

was introduced to ZENCRACK and a primary crack with length  presented in Table 2 was generated in the middle 

of specimen through replacing a series of meshed crack blocks called s03_t23x1 (Fig. 8). 
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Then, according to the use of Paris law [20,21], through combining data from the three loading levels 

related to acceleration stage (Fig. 6) in a graph (fig. 9), and passing an exponential regression line from the 

graph points, the final calibration constants for use in the software, namely, c2 and n2,  were obtained 0.0008 and 

1.2714 respectively.  Subsequently, fatigue tests were carried out by defining the material final constants and 

fracture toughness (critical stress intensity factor, Kc) presented in Table 4 and the stress intensity factor 

calculated using the CTOD and J integral method. Finally, the fatigue life of specimen was calculated using 

Paris law [20, 21]. Fig. 10 shows the crack growth fatigue in the finite element model of Limestone under 

1.6KN maximum applied load. 

The obtained fatigue life of Limestone was presented in Table 4, and the determined growth of crack 

length was shown in Fig. 11; it seems that the finite element method is able to predict the fatigue behavior of 

Limestone specimens well. The crack growth versus the calculated stress intensity factors is shown in Fig. 12-

14. It seems that the agreement between numerically analyzed results of fatigue crack growth and the 

experimental data are more than this agreement for the analytical results. In addition, it is clear that the 

numerical results obtained based on J integral method are closer to the experimental results than those obtained 

based on CTOD method. 

 

 
Fig 7. Finite element model of static-bending test applied on cubic limestone in ABAQUS software (U and UR 

are components of displacement). 

 

 
Fig. 8. Finite element model of fatigue bending test applied on cubic limestone including an initial crack in 

ZENCRACK software. 
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Fig 9. The combination of experimental data related to acceleration stage (crack growth rate - stress intensity 

factors) to determine the calibration constants used in the numerical method (da and k is given in mm and  

mMPa  respectively). 

 
Fig. 10. Finite element analysis of fatigue crack growth. 
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Fig 11. Crack length versus cycle number, from the numerical simulation and experimental results for constant 

amplitude cyclic loading with load values 1.26, 1.44 and 1.6 KN (da is given in mm). 

 

 

 
 

Fig. 12. Crack length stress intensity factor, from the numerical simulation and experimental results for constant 

amplitude cyclic loading with load value1.26 KN (da and k is given in mm and  mMPa  respectively). 
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Fig 13: The graphs of crack length stress intensity factor, from the numerical simulation and experimental 

results for constant amplitude cyclic loading with load value1.44 KN  

(da and k is given in mm and  mMPa  respectively). 

 

 
 

Fig 14: The graphs of crack length stress intensity factor, from the numerical simulation and experimental 

results for constant amplitude cyclic loading with load value1.6 KN  

(da and k is given in mm and  mMPa  respectively). 
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Fig. 15: The curve of crack length-stress intensity factor obtained from the numerical simulation and 

experimental results for constant amplitude cyclic loading with load values 1.26, 1.44 and 1.6 KN  

(da and k is given in mm and  mMPa  respectively). 

 

Table 4: Fracture toughness and calibration constants and fatigue life prediction by analytical and numerical methods. 
Prediction Error (%)  Fatigue life (cycle)  Material constants        )CKFracture toughness (

)( mmMPa  

Applied 

maximum load 

(KN)  

num
N  

anal
N  

num
N

  

anal
N

  

exp
N  

2
n  

2
C  int_J

  

CTOD
  

.Exp  

+0.506 -13.41 1191 1026 1185   1.2714  0.0008 143 176 150.26 1.26 

+0.204 +5.92 491 519 490   1.2714  0.0008 53.1 60.5 50.65 1.44 

+2.96 +14.07 139 154 135  1.2714 0.0008 47.3 51.4 46.17 1.6 

 

6. Conclusion 

 

In order to examine the fatigue behavior of rock, a three-point bending fatigue test was carried out on cubic 

specimens of Limestone; the maximum applied load was 70%, 80% and 90% of the fracture load in the static 

bending test. In addition, fatigue life of Limestone and the growth of crack length during the test were 

analytically and numerically modeled based on J integral method, CTOD method and the finite element method.  

In the analytical method, fatigue life by a combination of basics NLFM and Paris law was predicted.  

Furthermore, in numerical method, fracture mechanics parameters using the CTOD and Energy methods, were 

obtained, and a numerical modeling of fatigue crack was performed for both methods. Finally, using Paris law, 

the fatigue life of specimens, and fatigue crack growth were simulated in three-dimensions. 

Based on the obtained results, the following conclusions have been drawn: 

 

− The crack growth rate decreased before that this length reached the critical value, and then it increased 

until fracture. In addition, by increasing the applied maximum load, the ultimate crack length prior to 

final fracture and fatigue life decreased. 

− Analytically obtained results illustrated that this method could fairly predict the fatigue life of 

Limestone with the error from 5.92% to 14.07%, but the fatigue life and crack growth rate evaluated 

from finite element method had higher agreement with the experimental data (i.e. fatigue life error 

from 0.5% to 2.96%) than the analytical results. Finally, the obtained fatigue life and crack growth rate 

based on J integral had the highest agreement with the experimental data.  
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− Above-mentioned analytical and numerical methods, both are successful in predicting the fatigue crack 

life, with  this difference that the analytical method, the calibration constants are much needed, and for 

low loading levels is highly recommended, however, numerical analysis requires less calibration 

constants, and can be used for all load levels. Consequently, finite element simulation based on the 

energy method is the best approach for predicting fatigue behavior of the rock. 

 

Appendix A 

 

A.1. Crack Tip Opening Displacement (CTOD) 

This method is an indicator for determining plastic strain. If the CTOD exceeds a critical value, failure 

occurs. This criterion was first proposed by WELLS [24, 25] and it can analyze crack growth and size of crack 

tip in plastic zone (Fig. A.1.1). If it is assumed that there is a central crack with 2a length, COD value is [26, 

27]: 

22)rp(a
E

4=2V=COD x−+∗
σ

                                                                                 (A.1.1) 

 

With replacing a =x and regardless from rp square, in the above equation, CTOD value is: 

rp2a
E

4 ∗∗=
σ

CTOD                                                                                                    (A.1.2) 

Where σ and E  are stress and elasticity modulus. 

 
 

Fig. A.1.1. Opening displacement of a crack [26, 27]. 

 

In ZENCRACK, to calculate the stress intensity factor using CTOD method, by defining a local coordinate 

system at any point of the crack front (Fig. A.1.2), the relative opening displacement of this point is calculated 

using equation A.1.2, and then the mode I stress intensity factors are calculated considering the obtained 

displacement by following equation [23]:  

stress Plane              1

strain Plane      1

2

8

2

=

−=

∗
=

B

B

rB

VE
K

i

I

υ

π

                                                                                                 (A.1.3) 

 

Where υ  is the Poisson's ratio and 
i

V  is the relative displacement of the crack (CTOD). By equation A.1.3, the 

stress intensity factors can be obtained, and with values stress intensity factors, equivalent energy release rate 

from the following equation is obtained [23]: 
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Finally, using stress intensity factors and equivalent energy release rate, fatigue life can be predicted as follows 

[23]: 

 

)()( GCKC
dN

da
n

∆=∆=                                                                                                (A.1.5) 

 

 
Fig. A.1.2. A local coordinate system defined at each point of the crack length to calculate the displacement in 

the direction I (opening mode), II (sliding mode) and III (tearing mode) [23]. 

 

 
Fig. A.2.1. Selecting the closed contour Γ around the body under stress [28]. 

 

A.2. J Integral (Energy Method) 

J integral or energy method is applied to determine the fracture behavior of nonlinear materials. J Integral is 

defined by following equation [28]: 

dS
x

u
TWdyJ
δ

δ
−= ∫Γ                                                                                                         (A.2.1) 

As shown in Figure A.2.1, Γ is a closed contour in the opposite direction of clockwise, and it surrounds an area 

of a body under stress. W is elastic energy, T is the stress vector perpendicular to Γ, u is the components of 

displacement vector in x direction and dS is a longitudinal element of the contour Γ. 

Since the J integral is independent of any path, it is easy to calculate the integral. Thus, J-Integral is a 

simple way to calculate the energy release rate in cases where a large plastic zone exists at crack tip [29]. In the 

ZENCRACK software, the stress intensity factor at any point in along the crack front can be calculated using J 
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integral method. Values of J-Integral can be defined as the rate of energy release during crack growth. Assuming 

a virtual crack growth  in plate of three-dimensional crack growth, J-Integral values can be defined by 

[30]:      

∫=

A

qdaHnG ..                                                                                                                  (A.2.2) 

 

Where G is Energy release rate,  is a surface element near the crack tip,  is normal vector of the surface 

element ( ),  is local orientation vector for the virtual crack growth and  is a matrix, which is defined as 

follows: 

 

)(
x

u
WIH

δ

δ
σ−=                                                                                                               (A.2.3) 

                                                                                                    

Where W, I, σ and xu δδ  are the elastic energy of materials with elastic behavior, the unit matrix, stress 

matrix and strain matrix, respectively. Finally with the values of G and use Equations A.1.4, the stress intensity 

factors can be calculated. 
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