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ABSTRACT 

 

In relativity theory Lie derivative of different quantities (physical or geometrical) define symmetries. 

The study of symmetries in general relativity not only gives us new solutions of Einstein’s field 

equations but also classify those solutions. In this paper Killing and homothetic symmetries of FRW 

spacetime are discussed in an equivalent theory of gravitation known as teleparallel theory of 

gravitation. Our findings show that FRW spacetimes admit only four teleparallel Killing vector fields 

and do not possess proper teleparallel homothetic vector field. 
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1. INTRODUCTION 

 

General theory of relativity is one such theory of gravitation which gave momentum to our 

understanding of universe and enables us to study different aspects of universe through the powerful 

knowledge provided by this theory. The study of conservation laws through symmetries of the metric 

for a spacetime is one aspect that helps us to understand and expose the hidden realities of the universe. 

It is well established fact that symmetries of a spacetime metric give rise to conservation laws [1]. For 

this reason the study of different symmetries remained an important topic to discuss. The symmetries of 

spacetime metric like Killing and homothetic vector fields were studied in the presence of curvature in 

the spacetime [2-5].  

The laws of nature described by general relativity seem true and most of them have been proved 

through experiments. The validity of these laws is recorded at classical level but at quantum level 

relativity theory do not provide a meaningful description. For this reason, Einstein himself introduced 

teleparallel theory of gravitation. This theory is based upon Weitzenböck connection [6]. In terms of 

Weitzenböck connection the spacetime curvature is zero and it has torsion. This torsion is now 

responsible for matter interaction and it plays the role of a force [7]. Though this theory remained 

unsuccessful in describing interaction at quantum level but researchers are studying it as an alternative 

theory of gravitation. The study of symmetries in this new description has been started with the 

definition of teleparallel Lie derivative and application of that to the Einstein’s universe for teleparallel 

Killing vector fields [8]. After that, number of papers have been published by many authors on 

teleparallel Killing, homothetic and conformal vector fields [9-16].  

Homothetic vector fields which preserve the metric of a spacetime to a constant factor is important 

in both relativity theory and teleparallel theory as it give one more symmetry generator than Killing 

vector field. We are therefore, interested in this paper to explore teleparallel Killing and homothetic 

vector fields for the Lorentzian manifold of FRW 1+=K  model. Before going to discuss our main 

results we shall give an introduction of the basic terms involve in this research.  
 

2. Teleparallel Theory (Some Basic Terms): 

In teleparallel theory a covariant derivative on tensor of rank 2 works as [7] 

.

, θνρµ
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θµρν
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here comma stands for partial derivative and ρν
θ

Γ  represents Weitzenböck connections. They are 

obtainable from tetrad through relation [7] 

.µν
θ

νµ
θ a

a
BB ∂=Γ      (2) 

where
ν

a
B  and µ

a
B  are non-trivial tetrad field and inverse tetrad field respectively. Tetrad fields 

themselves satisfy the relation  

,

ν

µ

ν
µ δ=

a

a
BB  

a
bb

a
BB δ

µ
µ =   (3) 

The Riemannian metric can be generated from these tetrad fields as  

.νµνµ η
ba

ba BBg =      (4) 

where )1,1,1,1diag(−=abη  is the Minkowski metric. Weitzenböck connections give rise to torsion 

tensor as 

νµ
θ

νµ
θ

µν
θ

Γ−Γ=T      (5) 

This torsion is anti symmetric in its last two indices. Teleparallel Killing equations for the vector filed 

X  can be obtained from the equation [8] 
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where
T

X

L  represents Lie derivative in teleparallel theory. For finding teleparallel proper homothetic 

vector fields this equation will extend to  

}.0{\,2 RggL
T

X

∈= αα µνµν    (7)  

 

3. MAIN RESULTS 

 

The line element for FRW 1+=K  spherical model in its usual coordinates system is given by 

)]()[( 22222222 φθθχχ dSindSindtdtds ++Φ+−=  (8) 

whereΦ  is no-where zero functions of t  only. A simple use of relation (4) gives us the following tetrad 

and inverse tetrad components as  
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Using relation (5) to get the torsion components as  
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where dot denotes the derivative with respect to .t  A vector field X  is called a teleparallel 

homothetic vector field if it satisfies equation (7). Expanding equation (7) with the help of equations (8) 

and (11), the following ten non linear, coupled partial differential equations are obtained  
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Now integrating equation (12) we get  

),,,(),,,( 2110 φθχαφθχα tAXAtX +=+=  (21) 

Now using equation (21) in equations (18) and (20), we get  

),,,(),,(cot
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1
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322 φχθφθχχχθ
α

αθ tAdtAX +−−= ∫  (22) 

),,,(),,(cot
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1
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2

423 θχφφθχχχφ
α

αφ tAdtAX +−−= ∫  (23)  

In the above equations (21), (22) and (23) the functions ),,,(1 φθχA ),,,(2 φθtA ),,(3 φχtA  and 

),,(4 θχtA  are functions of integration which are to be determined. First we will find teleparallel 

Killing vector fields. 

 

3.1. Teleparallel Killing Vector Fields 

For obtaining teleparallel Killing vector fields we will solve equations (12)-(20) with the help of 

equations (21), (22) and (23) and substituting .0=α  Equations (21), (22) and (23) now takes the form: 
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Now using (24) in equation (13) and solve after differentiating the resulting equation with respect to ,χ  

we obtain ),(),(),,( 211 φθφθχφθχ KKA +=  and 
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= ∫  To avoid lengthy details it suffices to note 

that we shall follow the same lines and use the system of equations (24) in the remaining Killing 

equations and reach to a solution for equations (12)-(20), which is listed below  
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where .,,, 3210 Rcccc ∈  Thus the generators for the teleparallel Killing symmetry on the manifold of 

FRW spacetime given in (8) are listed below as:  
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 In general relativity the same 

spacetime (8) admits six Killing vector fields as [9] ,
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ec  It is important to note that, not only 

the generators of the Killing algebra in teleparallel theory are less than the generators of the Killing 

algebra in general relativity but also different from one another. Neither the generators in teleparallel 

theory are obtainable from the generators in general relativity nor can the generators in general relativity 

be derived from that of teleparallel theory. 

 

3.2. Teleparallel Proper Homothetic Vector Fields 

Now our aim is to solve equations (12)-(20) completely for .0≠α  Using equations (21)-(23) in equation 

(13) and solve after differentiation with respect to ,t  we get the unknown functions as 
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all the above information in equations (21)-(23) will lead us to a system of equations  
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where ),(),,(),,( 321 φθφθφθ KKK  are all unknown functions obtained after integration. Using 

equation (26) into equation (14) and solving, we get an equation of the form 

.0)cossin
2

(sincossin
2

1 2
32 =−ΦΦ+−− αχχ

α
χχχ &

cc Which simply means that 

0,0 32 == cc  and .0=α  This means that no proper homothety exist and the teleparallel homothetic 

vector fields are just the teleparallel Killing vector fields given in (25).  

 

4. SUMMARY AND DISCUSSIONS 

 

In this paper a diagonal tetrad is taken for FRW 1+=K  model. Teleparallel Lie derivative has 

been applied to the metric of the above model to obtain teleparallel homothetic equations. It has shown 

that dimension of the teleparallel Killing vector field is four. The generators of Killing vectors are 

compared in general relativity and teleparallel theory. The generators of Killing vectors in both the 

theories are found different. This study also reveals that neither of the generators is obtainable from the 

other.  

One of the main purposes of our study was also to see if the above spacetime admit any extra 

symmetry other than teleparallel Killing symmetry for the choice of diagonal tetrad. Interestingly, a 

diagonal tetrad does not allow this spacetime to exhibit teleparallel proper homothetic vector filed.  

Our paper also explored that the presence of torsion reduced the number of Killing symmetries and 

are totally different from Killing vector fields in general relativity.  
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