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ABSTRACT 

 

In this work, the implementation of local kernel-based method for heat equation is investigated. The method 

is local and resulted sparse differentiation matrices. Only small dimension of linear systems of equations are 

to be solved for every center in the domain. This procedure is more efficient and reliable in solving large 

scaled engineering problems in irregular domain. Three test cases are done, In the first case the square 

domain is selected, in the second case the L-shaped domain is considered, while in the third case the circular 

domain is chosen to approximate the solution of the given problem. The accuracy of the method is tested in 

terms of 
∞
L  error norm with respect to the density of interpolation nodes, stencil size, multiquadrics kernels. 

KEYWORDS: Local kernel-base method, radial kernels, diffusion equation; irregular domain, meshless 

method. 

 

1 INTRODUCTION 

 

Most problems in engineering sciences may be formulated as coupled partial differential equations. The 

exact solution of such type equations in many cases are not easy to obtain, particularly in irregular shaped 

domain. The recent development of such types of kernel-based methods are investigated in the most recent 

monographs [1-7] and some of their applications are given in [8-13]. The Kernel-based meshless method or 

Kansa method [14] is the more famous of them. This meshless approach has been extended to symmetric 

kernel-based method [15] , to the modified collocation method [16] and to the indirect kernel-based method 

[17]. In contrary to advantages over mesh-depent methods, unfortunately all the mentioned methods fail to 

perform dealing for problems with large set of collocation points in the domain, because they resulted fully 

populated differentiation matrices, which are very sensitive to free shape parameters involved in the kernel 

functions. Sparse interpolation matrices can be obtained by using compactly supported kernel functions. 

Sarler and Vertnik, developed a local meshless methods which over come all the difficulties of full-populated 

differentiation matrices [18]. This approach have been applied for a variety of problems, see for example [19-

25]. We further extended this approach for solving the diffusion equation in irregular domain. 

 

1.1   Local kernel-based approximation 

For a given sample data points of unknown smooth function ( )u x , ( )
i

u x , 1,2,..., ,i N= where the N

centers 
1

{ ,..., }
N

x x ⊂Ω ,where Ω is arbitrary shaped domain and the centers can be chosen anywhere in 

the domain Ω . The local kernel-based approximation of the function ( )u x  , at each center
i
x ∈Ω , is 

obtained in the form  

1

( ) ( ), 1,2,..., ( )
n

i j i j i

j

s x k x x j n K nα

=

= − = ∈ ⊂ Ω∑                                        (1)                                                              
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where, ' sα  are the expansion coefficients, 
j

r x x= − , is the Euclidean norm between two  centers x and 

j
x , ( )rκ  is a radial kernel function defined for 0r ≥ and ( )

i
K n is a vector contains the index of center 

i
x

along with the indices of the reaming 1n −  centers. This set of centers for the indexed set ( )
i

K n  is call a 

stencil as shown in figure 1. Consequently, we have N number of n n× small size linear systems of 

equations, , 1,2,..., ,
i i i
s B i Nα= =        (2)      

  

the entries of the matrix 
i

B  are ( ), , ( )i

kj k j ib k x x k j K n= − ∈ , the matrix 
i

B  is called the system 

matrix, we have to solve each system for the unknown coefficients. Next, we approximate the linear 

differential operator ( )
s

L x , by

1

( ) ( ), 1,2,..., ( )
n

i j i j i

j

Ls x L x x j n K nα κ

=

= − = ∈ ⊂ Ω∑  

 (3)we write eq.(3) as the dot product of two vectors, given by  
ii

i
vxLs αo=)(                 (4)where the 1n×  vector 

i
α   is unknown 

coefficients, and 1 n×  vector 
i
v  have the entries  

( ), 1, 2,..., ( ),i

i j iv L x x j n K nκ= − = ∈     (5) 

using eq.(2), we eliminate the unknown coefficients, 
1( ) ,i i i

B sα
−

=      (6) 

by inserting the values of  
i

α from (6) in (4) to get,  
1

( ) ( )
i i i i i

i
Ls x v B s w s

−

= =      (7) where, 

1( ) ,i i i
w v B

−

= (8)         

 denote the corresponding weight for the center 
i
x . Consequently for every centers locations, the 

kernel-based spatial approximation of the linear differential operator is obtained  

,Ls Ws=          (9) 

Where the N N×  sparse differentiation matrix W having n  non-zeros entries, and N n−  with zeros 

entries, where n is stencil size. When kernel-based local approximation has done, then the problem defined 

by 

t
u Lu=                                                                                               (10)      reduced to the system of 

ODEs in the form 

( ),
t
s F s=                                                                                               (11)     

In the present case, we have ( ) ( )F s W s= .The time integration may be carried out by any ODE 

solver, e.g. ode113, ode45, which are built-in Matlab. The initial solution vector would be the initial solution

0
u . An appropriate ODE solver adaptively select a correct time step size tδ , which overcome stiffness of our 

ODEs system. In the present work, we use MQ radial kernel function, which contains a free scale factor 

known as a shape parameter, defined as
2

( ) 1 ( )r rκ ε= + . The solution accuracy is very sensitive the 

scale factorε . We have obtained the correct scale to get maximum accuracy. A variety of criteria are 

available in the literature. In the present case, we are using the procedure for getting optimal value of shape 

parameter available in the literature [7]. In this procedure search forε , when it satisfy the condition 
13 15

10 10 ,κ< < κ  is the condition number of the system matrix B . We then use singular value 
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decomposition of the system matrix 
i

B  by [ , , ( )]i
U M V svd B= , Here the N N× matrices U , and V  

are  orthogonal, and the N N× matrix M  is diagonal with  N  singular values of the system matrix 
i

B , 

and 
1( ) max( ) min( )i i

B B M Mκ
−

= = is the condition number of the system matrix 
i

B . 

3. Numerical experiments 

Here we implement the kernel-base local meshless method developed above for the diffusion equation  
2

,
t

w w= ∇                             (12) 

with the analytic solution 
2( , ) sin( )sin( ) exp( 2 ).w x t x y tπ π π= −

 
3.1 Rectangular domain 

We select the rectangular domain 
2[ 1,1]−  to approximate the solution of diffusion equation using the 

kernel-based meshless method derived in the above section. The time integration are carried out by Rk4 

method. The step size 0.001tδ = , the interpolation nodes 400N =  are selected in our computations. The 

approximate solution in terms of the L
∞

 error norm, the stencil size n , the condition numberκ , of the 

system matrix are shown in table 1. For maximum sparsity, we have to choose stencil sizen  much smaller 

than the number of centers in the domain. However the stencil size n  is problem dependent and is related to 

the condition number κ  of the interpolation matrix. The stencil size is selected in such a way that the 

condition number of the interpolation matrix be kept within the specified range as discussed above. The 

sparsity pattern shows the location of non-zero entries in the differentiation matrices as shown in figure 1. 

These sparsity pattern show how well is the kernel-based method, which resulted full differentiation matrices. 

The present method is very well suited to large scaled problems, where the classical global kernel-based 

method may faces problems for its implementations. 

 

Table 1.Numerical results with different stencil sizes n , when 400N = , 0.1t = , 0.001tδ = , in 

rectangular domain. 

n  L
∞
κ c 

C.time(s) 

6 2.6012e-0032.3567e+0130.0100 1.337908 

10 7.0388e-0046.1889e+0130.2100 1.480991 

   

 

 

 
Figure 1. Centers distributions and a stencil corresponding to boundary center (red) and an interior center 

(green), and the sparsity pattern of the differentiation matrix W, when rectangular domain is used for 

.001.0,1.0,400 =∂== ttN  
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Figure 2. Approximate solution of diffusion equation in the rectangular domain using kernel-based method, 

when .001.0,1.0,400 =∂== ttN  

 

3.2 L-shaped domain 

We apply the local kernel-based method for approximating the L-shaped domain shown in figure 3. The 

Runge-Kutta method of order four is used to integrate in time the diffusion equation. In this numerical 

experiment the time step size 0.001tδ =  is selected. The uniformly distributed centers 176N =  are 

selected in the L-shaped domain. The approximate solution in terms of the L
∞

 error norm, the stencil size n, 

the condition number κ  of the system matrix is investigated and is shown in table 2. The centers 

distributions and sparsity of the differentiation matrix W  are given in figure 3. The approximate solution of 

the diffusion equation via local kernel-based method at various time are shown in figure 4. The results again 

demonstrate the effectiveness of the current method in such a complicated domain for simulating the 

diffusion equation. 

 

Table 2: Numerical results with different stencil sizes n , when N=176, 0.1t = , 0.001tδ = , in L-shaped 

domain. 

n  L
∞
κ c 

C.time(s) 

6 2.6012e-0032.3567e+0130.0100 1.337908 

10 7.0388e-0046.1889e+0130.2100 1.480991 
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Figure 3. Centers distributions, sparsity pattern of the matrix W, when L-shaped domain is used. 

 

 
 

 
Figure 4. Approximate solution of diffusion equation in the L-shaped domain using kernel-based method, 

when .001.0,1.0,176 =∂== ttN  

 

3.3 Circular domain 

Now we approximate the solution in a circular domain of radius 1R = centered at origin. For time 

integration once again we used Runge-Kutta method to simulate the diffusion equation with time  step
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0.001tδ = . The interpolation nodes 225N =  are selected which are uniformly distributed in the circular 

domain. The results via local kernel-based method are given in table 3 and figures 4-5. Once again the local-

kernel based method performed very well in the circular domain. 

 

Table 3: Numerical results with different stencil sizes n , when N=225, 0.1t = , 0.001tδ = , in 

circular domain. 

n  L
∞
κ c 

C.time(s) 

9 1.1384e-003  8.4252e+0140.0100 2.214279  

10 3.8413e-003   2.3019e+0130.0800 1.455471  

   

 

 
Figure 5. Centers distributions, sparsity pattern of the matrix W, when circular domain is used. 

 

 

 
Figure 6. Approximate solution via local kernel-based method in circular domain. 
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3. Conclusion.  

 

In this work we extend the work of authors in [18] for approximating the solution of diffusion equation 

in irregular domain. By the use these radial kernels the present method have a great potential for solving 

many problems in higher dimensions with irregular shaped domain. It is not easy to implement the global 

kernel-based method for problems with large set of insolation nodes in the domain. However the present local 

kernel-based method have the capability of solving problems with large data sites in the domain. This 

procedure has the flexibility to keep the differentiation matrix sparse. This relatively new kernel-based 

approach is (very) simple meshless formulation for solving a wide range of diffusion problems. The time-

marching is done with RK4 method. In the present method the complex-shaped domain can easily 

incorporated. This meshless procedure appears efficient, it does need full dense systems like the Kansa's 

global approach. But only small dimension system matrices have to be solved  in time step corresponding to 

each center in the domain. The procedure discussed in this work can be easily be extended to solve other 

similar types of partial differential equations. 
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