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ABSTRACT 

 

The purpose of study is to develop numerical techniques for nonlinear magnetohydrodynamics (MHD) Jeffery-

Hamel blood flow problem to analyze the behavior of blood flow and its contribution in high blood pressure through 

artificial neural networks trained with Active Set and Interior Point Algorithm. First we transform three-dimensional 

flow problem into two-dimensional MHD Jeffery-Hamel flow problem, which is converted into an equivalent third 

order nonlinear ordinary differential equation. These neural network models using log-sigmoid activation function 

are developed for new transformed equation. Detailed statistical analysis is also included to ensure the reliability and 

accuracy of the proposed methods through large number of independent runs. Further, comparative studies of the 

proposed solutions with standard numerical results are presented. 

KEYWORDS: Blood flow, Jeffery-Hamel Problem, Neural Networks, Nonlinear ODEs, Boundary value problems, 

 

1 INTRODUCTION 

 

Jeffery-Hamel problems are considered as incompressible viscous fluid flows between non-parallel sheets. 

Study of Jeffery-Hamel flows have been commonly used in various fields of applied science and engineering like 

mechanical and bio-mechanical engineering, fluid mechanics, environmental science. Jeffery [1] and Hamel [2] 

have been proposed the mathematical formulation of the problem in detail. Jeffery-Hamel flows actually provide an 

exact similarity solution of the Navier-Stokes equations in the special case of a two-dimensional blood flow through 

a tube with inclined plane sheets converges at a source or sink at the single point. Further for historical background, 

its applications and importance in various fields reader can go through the references [3-8]. The classical view of 

Jeffery-Hamel problems with use of an external magnetic field on a conducting fluid were studied in [9] by taking 

the magnetic field as a control parameter. The MHD Jeffery-Hamel flow problems do not exist any exact solution 

due to their highly non-linearity in the literature. However, their analytical and numerical solutions have been 

frequently reported in the literature, like Homotopy Perturbation method (HPM) [10-13], Homotopy analysis 

methods (HAM) [14-15], the Adomian decomposition method (ADM) [16-17], the Differential transform method 

(DTM) [18-19], Variational iteration methods (VIM) [20-21], and so on.  

Recently studied on the Jeffery- Hamel flow equations are presented in [22-27]. Therefore there is a need to 

find stochastic numerical methods based on computational intelligence techniques to solve these problems. 

Today the most serious physiological problem was stenosis (narrowing) of the arteries because they develop 

and causes many harmful vascular diseases which have very close relationship with the nature of blood flow and 

deformation of vascular walls. The stenosis of artery causes by the decomposition of fibrous tissue and fats in artery 

lumen which restricts the normal movement of blood where reduces the transport of blood in a whole body. 

Furthermore, the transport of blood entirely depends on the heart pumping action in the circulatory system of human 

being and produces a pressure gradient. Due to the stenosis of artery pressure increases that causes the heart to work 

hard. 

Stochastic algorithm based on artificial intelligence techniques using neural networks have been applied 

extensively by the many researcher to solve a variety of initial and boundary value problems of linear and non-linear 

differential equations [28-31]. Recently, uses of these algorithms are non-linear Van-der Pol oscillators [32], 

Troesch’s problems arising in plasma physics [33], solution of thin plate bending problem [34], tracking problems of 

a spherical inverted pendulum [35-36], the first Painlevé transcendent [37], surrogate modeling for the solution of 

integral equations [38], Bratu’s problem in fuel ignition modeling [39], etc. 

In our proposed model blood is consider as Newtonian fluid, due to which problem become simple and still 

valid for blood in large artery. The purpose of this study is to develop the relationship between the rate of the blood 
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flow and cross-sectional area of artery. To understand the conditions that contribute in hypertension this increases 

the risk of heart diseases. 

This mathematical model containing two partial differential equations, which are used to find the cross 

sectional area, blood flow rate and pressure. By using the transformation to convert cylindrical system into another 

system for sack of simplicity of problem. The non-linear system of equations are governed and converted into linear 

equations by linearization method. In section 2, we formulate the problem and next section proposed a mathematical 

model for this equation with the help of log-sigmoid function. In section 4 we presented numerical and graphical 

results. Finally, we put a comparative analysis through Active set Algorithm (AST) and Interior Point technique 

(INT) through MATLAB. We concluded the paper in the last section 5. 

 

1.2Mathematical Formulation of Problem 

 Consider cylindrical coordinates ( , , )r zθ and a steady two-dimensional flow of an incompressible 

conducting viscous fluid from a source or sink. Where r  is radial, z is axial component and “θ ” is angular 

coordinate. Consider a fluid in the problem is human blood and visco-elastic effect is neglected, therefore behave 

like water. We consider pipe like behavior of human artery in this problem and construct a cylindrical problem in 

three dimensional partial differential equations (PDES). The governing mathematical relations are given as. 
 

[ ( , )] 0ru r

r r

ρ
θ

∂
=

∂
.                                  (1)                  
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Where ρ is density, v is kinematic viscosity, ( , )u r θ is the component of velocity in radial direction and 

P denotes fluid pressure. 

Integrating the Eq. (1) with respect to r . We get the following equation. 

 

( , ) ( )ru r fθ θ= .    (4) 

Now we introduce the new function ( )f η  as following, 

( )
( )

f
f

A

θ
η =  .        (5) 

Where by using dimensionless parameters, 

,

θ
η

α
=

max
A f=

.
        

From Eq. (4) and Eq. (5), we conclude that 

( , )
( )

ru r
f

A

θ
η = .       (6) 

 
( )

( , )
Af

u r
r

η
θ =  .      (7)  

Differentiate Eq. (7) w.r.t " r " and "θ ". 

First we take derivative w. r. t “ r ”, 

 

2

( , ) ( )u r Af

r r

θ η∂
= −

∂
 .            (8) 

By taking second derivative of ( , )u r θ w. r. t “ r ”, 
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2

2 3

( , ) 2 ( )u r Af

r r

θ η∂
=

∂
 .            (9)  

Again differentiating Eq. (7) w.r.t “θ ”, we get 
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u r A f A
f

r r

θ η
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Second derivative of ( , )u r θ w.r.t "θ ". 

2
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Integrating Eq. (3) and, after simplification we get the following result; 

2
( , )

v
P u r

r
ρ θ=  .      (12)  

Differentiate pressure "P " in Eq. (12) w.r.t “ r ”, we obtain the result, 

2
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Now putting the values from above equations into Eq. (13) we get, 

3
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Substituting the values of Eqs. (7 -11) into Eq. (3), we obtain 
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Now dividing both sides by “
3

2A

r
”, we obtain 
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After simplify the above equation takes the final form as, 
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Differentiate the Eq. (16) w.r.t “η ” we can get, 
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Multiplying “

2

v

α

” with the Eq. (17) both sides, we get 

2
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Substitute the Eq. (19) into Eq. (18), we obtain boundary value problem of a third order ordinary differential 

equation for the normalized function profile ( )f η , 

 
2( ) 2 Re ( ) ( ) 4 ( ) 0f f f fη α η η α η′′′ ′ ′+ + =  .      (20) 

 

With boundary conditions  

 

(0) 1,f = (0) 0,f ′ = (1) 0,f =                          (21)       

 

Here “Re ” is the Reynolds numbers, which is defined as: 
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max max
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, 0, 0
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α

− > >
= = 
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1.3 Neural Networks Modeling 

 

The solution of the Jeffery-Hamel problems ( )f η  through neural networks which are well known 

approximates and its “n
th
”order derivatives 

( ) ( )nf η  can be approximated by the following continuous mapping in 

this methodology. We construct the mathematical model based on active set (AST), Interior Point technique (INT) 

with fitness function. The following activation functions called log-sigmoid based on logarithmic functions was used 

in the mapping [40-44]. 
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1

1
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e
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The solution ( )f η of the differential equation (20) along with its third order derivative
(3) ( )f η can be 

approximated and  ˆ ( )f η  is defined as 

 

1
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N

i i i
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where A , B , and  C   are real-valued bounded adaptive parameters, can be combined in vector form as written as:  
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where N is the number of neurons. This proposed mathematical model is using 
LS
f , for the approximation of the 

solution of Eq. (23) along with first and 3
rd

 order derivative. 
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where (') mean derivative with respect to η . The mathematical model for Eq. (20) can be formulated by a 

linear combination of networks, Eq. (24), (25) and (26), called a differential equation neural network (DENN). 

 The fitness function for proposed model “E” has been formulated for the Eqs.(20)-(22) using Mathematical 

model by defining the unsupervised error as the sum of mean squared errors:  
1 2

E E E= + . 

The error term 
1

E  is connected with the physical problem (20) is given as: 

''' ' 2 '

1

ˆ ˆ ˆ ˆ2 Re 4
i i i i
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Nhη =  with increment ‘ h ’ i.e., value at N subintervals in [0,1], 

1 2
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2 3
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[ , ]

N N
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−

 . 

Also 
2

E  for initial values can be defined as 

2 2 2

2 0 0

ˆ ˆ ˆ( 1) ( ') ( )
N

E AVERAGE f f f = − + +              (28) 

 

Optimization procedure for numerical result.   Furthermore, we give in detail about the procedural steps for the 

optimization in MATLAB Optimtool, is given below. 

• Step 1:Initialization:  A vector is generated bounded real values of length equal to the number of weights in 

given Mathematical model randomly plays as the starting point for each solver:  

1 2 1 2 1 2
( , ,..., , , ,..., , , ,..., ),

N N N
A A A B B B C C C=W

Here N represents the number of neurons. 

• Step 2: Fitness Evaluation: The MATLAB Optimtool for constrained optimization problems is invoked for 

each model. 

• Step 3: Termination Criteria: Terminate the execution of the solver, if any of the following criteria is 

satisfied: 

� required level of predefined fitness obtained, i.e., .≤
-12

E 10  

� total number of iterations executed. 

• Step 4: Storage: Save the final optimal weights (variables) along with fitness values and total computational 

time taken by the algorithm. 

•  Step 5: Statistical Analysis: Repeat the process from steps 1 to 4 for sufficiently large number of   runs to 

perform an effective and reliable statistical analysis. 

 

1.4Numerical solutions 
 

In this section we consider the case of Jeffery-Hamel flows with Reynolds number Re 110= and channel 

angles 
0
3α = , we show that the solutions of Jeffery-Hamel flow problems with the uses of proposed method 

along with two optimizer like AST and INT techniques.  Further, the exact solution for this equation is not 

available, therefore we calculate the values of 
RF
f  used as a reference solution with technique of 

MATHEMATICA in this case and we now apply the neural network models with 10 neurons each to solve the 

problem. In each model there are a total of 30 unknown adjustable parameters or weights, its numerical 
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solution ˆ
LS
f  with the help of proposed method. Moreover, we calculate the value of absolute error 

ˆ
RS LS
f f−  with AST and INT. Through these solvers we showed that the present solution is highly accurate 

as compared to others methods present in literature. 

 

  

Figure1. AST technique result for proposed MHD problem 

 

Figure 2. Comparison of numerical result of AST with Reference solution 
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Figure3. Numerical result of INT for Proposed problem. 

 

 
 

Figure 4. Comparison of numerical result of INT with Reference solution 

 

Fig. 1 and Fig. 2 are shown the behavior of flow through AST and its comparison with reference solution and 

similarly Fig. 3 and Fig. 4 are represented the behavior of Jeffery-Hamel flow through INT technique and provide its 

comparison with reference solution. The numerical solutions obtained by the neural network models consistently 

overlap the reference solution, as shown in both figures. In order to elaborate small differences, values of absolute 

error (AE) are calculated, and results reported in Table I and Table II of AST and INT techniques respectively and 

their graphical representation is shown in Fig. 5 and Fig. 6 in this case. 
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Table1: Absolute Error (AE) for multi-runs of AST technique. 
Result/

η  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

AE1   2.34E-
05 

2.20E-
05 

1.97E-
05 

1.68E-
05 

1.38E-
05 

1.11E-
05 

9.17E06 8.20E-
06 

8.43E-
06 

9.96E-
06 

1.29E-
05 

AE2 4.72E-

05 

4.48E-

05 

4.03E-

05 

3.45E-

05 

2.82E-

05 

2.27E-

05 

1.87E-

05 

1.63E-

05 

1.62E-

05 

1.90E-

05 

2.46E-

05 

AE3 4.56E-

05 

4.34E-

05 

3.97E-

05 

3.48E-

05 

2.90E-

05 

2.41E-

05 

2.08E-

05 

1.92E-

05 

1.94E-

05 

2.25E-

05 

2.86E-

05 

AE4 4.85E-

05 

4.61E-

05 

4.11E-

05 

3.36E-

05 

2.44E-05 1.58E-

05 

8.78E-

06 

2.62E-

06 

2.19E-

06 

4.15E-

06 

3.63E-

06 

AE5 5.35E-

05 

5.04E-

05 

4.56E-

05 

3.97E-

05 

3.34E-

05 

2.83E-

05 

2.52E-

05 

2.44E-

05 

2.61E-

05 

3.12E-

05 

4.00E-

05 

AE6 9.94E-

06 

9.47E-

06 

8.68E-

06 

7.49E-

06 

5.76E-

06 

4.22E-

06 

3.23E-

06 

2.38E-

06 

1.64E-

06 

1.60E-

06 

2.23E-

06 

AE7 8.27E-

05 

7.80E-

05 

7.00E-

05 

5.96E-

05 

4.83E-

05 

3.87E-

05 

3.19E-

05 

2.80E-

05 

2.78E-

05 

3.29E-

05 

4.31E-

05 

AE8 4.70E-

05 

4.46E-

05 

4.01E-

05 

3.42E-

05 

2.74E-

05 

2.14E-

05 

1.69E-

05 

1.40E-

05 

1.32E-

05 

1.51E-

05 

1.98E-

05 

AE9 1.34E-

05 

1.32E-

05 

1.22E-

05 

1.03E-

05 

7.76E-

06 

5.19E-

06 

2.94E-

06 

8.46E-

07 

9.77E-

07 

2.09E-

06 

2.58E-

06 

AE10 3.43E-

05 

3.23E-

05 

2.93E-

05 

2.58E-

05 

2.23E-

05 

1.97E-

05 

1.84E-

05 

1.87E-

05 

2.07E-

05 

2.51E-

05 

3.18E-

05 

AE11 5.24E-

05 

4.95E-

05 

4.49E-

05 

3.91E-

05 

3.26E-

05 

2.72E-

05 

2.41E-

05 

2.29E-

05 

2.39E-

05 

2.83E-

05 

3.63E-

05 

AE12 2.66E-

05 

2.55E-

05 

2.30E-

05 

1.92E-

05 

1.51E-

05 

1.12E-

05 

7.87E-

06 

5.33E-

06 

3.97E-

06 

4.05E-

06 

5.47E-

06 

AE13 4.58E-

05 

4.38E-

05 

3.91E-

05 

3.21E-

05 

2.35E-

05 

1.55E-

05 

8.84E-

06 

3.11E-

06 

1.33E-

06 

3.23E-

06 

2.79E-

06 

AE14 8.27E-

05 

7.80E-

05 

7.00E-

05 

5.96E-

05 

4.83E-

05 

3.87E-

05 

3.19E-

05 

2.80E-

05 

2.78E-

05 

3.29E-

05 

4.31E-

05 

AE15 8.69E-

05 

8.12E-

05 

7.28E-

05 

6.29E-

05 

5.30E-

05 

4.51E-

05 

4.06E-

05 

4.01E-

05 

4.39E-

05 

5.34E-

05 

6.88E-

05 

 

 
 

Figure5. Absolute Error of AST technique with Reference solution. 
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Table2: Absolute Error (AE) for multi-runs of INT technique. 
Result/

η  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

INT1 9.25E-05 8.76E-05 7.82E-05 6.55E-05 5.12E-05 3.84E-05 2.84E-05 2.12E-05 1.78E-05 2.00E-
05 

2.74E-
05 

INT2 3.49E-05 3.37E-05 3.06E-05 2.63E-05 2.14E-05 1.65E-05 1.28E-05 1.03E-05 9.00E-06 9.72E-

06 

1.25E-

05 

INT3 7.77E-05 7.37E-05 6.64E-05 5.73E-05 4.76E-05 3.89E-05 3.30E-05 3.03E-05 3.10E-05 3.65E-

05 

4.69E-

05 

INT4 6.23E-05 5.95E-05 5.36E-05 4.61E-05 3.83E-05 3.09E-05 2.55E-05 2.28E-05 2.30E-05 2.65E-

05 

3.40E-

05 

INT5 7.89E-05 7.52E-05 6.79E-05 5.84E-05 4.81E-05 3.87E-05 3.19E-05 2.82E-05 2.79E-05 3.22E-

05 

4.15E-

05 

INT6 3.83E-05 3.64E-05 3.28E-05 2.82E-05 2.35E-05 1.91E-05 1.60E-05 1.45E-05 1.48E-05 1.73E-

05 

2.22E-

05 

INT7 9.80E-06 9.61E-06 8.74E-06 7.41E-06 5.81E-06 4.12E-06 2.64E-06 1.47E-06 5.97E-07 1.68E-

07 

2.32E-

07 

INT8 2.26E-05 2.19E-05 1.98E-05 1.69E-05 1.35E-05 1.00E-05 7.21E-06 5.13E-06 3.76E-06 3.61E-

06 

4.72E-

06 

INT9 2.50E-05 2.40E-05 2.15E-05 1.83E-05 1.48E-05 1.13E-05 8.57E-06 6.95E-06 6.28E-06 6.90E-

06 

9.04E-

06 

INT10 3.49E-05 3.37E-05 3.06E-05 2.63E-05 2.14E-05 1.65E-05 1.28E-05 1.03E-05 9.00E-06 9.72E-

06 

1.25E-

05 

INT11 6.44E-05 6.10E-05 5.50E-05 4.75E-05 3.98E-05 3.31E-05 2.85E-05 2.67E-05 2.82E-05 3.34E-

05 

4.27E-

05 

INT12 9.68E-05 9.17E-05 8.25E-05 7.10E-05 5.89E-05 4.83E-05 4.11E-05 3.79E-05 3.91E-05 4.63E-

05 

5.95E-

05 

INT13 6.92E-05 6.54E-05 5.90E-05 5.12E-05 4.32E-05 3.63E-05 3.18E-05 3.04E-05 3.25E-05 3.87E-

05 

4.94E-

05 

INT14 7.77E-05 7.37E-05 6.64E-05 5.73E-05 4.76E-05 3.89E-05 3.30E-05 3.03E-05 3.10E-05 3.65E-

05 

4.69E-

05 

INT15 6.23E-05 5.95E-05 5.36E-05 4.61E-05 3.83E-05 3.09E-05 2.55E-05 2.28E-05 2.30E-05 2.65E-

05 

3.40E-

05 

 

 
 

Figure6.Absolute Error of INT technique with Reference solution. 

 

1.5 Conclusion. 

• These solvers depend on neural network models using log-sigmoid function, optimized with active set and 

an interior point method can provide reliable solutions for the nonlinear two time transformed problem of 

the MHD Jeffery-Hamel flow equations. 
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• Comparative study of the results of the proposed models shows that solutions in case of log-sigmoid-INT 

and log-sigmoid-AST match upto 5 to 6 decimal places of accuracy. The results reported here are better in 

accuracy. 

• The proposed solvers have some advantages over other numerical techniques. 

• The beauty of proposed method is its simplicity. 

• In future, one may work other computational intelligence techniques based on neural network models, 

optimized with global and local search algorithms. 

• Moreover, one may explore to extend these methodologies to solve stiff, highly nonlinear differential 

equations with singularities and requiring convergent solutions on larger scale for better application of 

these problems. 
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