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ABSTRACT 

 

. Microarray technology helps in the identification of new genes in our body. This technology provides the 

fundamental aspects underlining our life by discovering the genetic causes of differences occurring in the 

functioning of the human body which is unknown before.  For example, a researcher might wish to know the 

effect of certain treatment by examining the differences in gene activity between treatment and control samples.  

But the detection of which genes that contribute to certain treatment using statistical test is a problem because 

the number of samples is smaller than number of variables.  Hence, we proposed three methods to help 

researchers to detect differential gene sets using shrinkage covariance matrix combined withHotelling’s T
2 

statistic.  The performances of the proposed methods were assessed using simulation study.  Shrinkage 

covariance matrix approach shows a promising result for detection of differentially expressed gene sets as 

compared to other methods. 

KEYWORDS: Hotelling'sT
2
, gene set analysis, shrinkage covariance matrix 

 

1 INTRODUCTION 

 

 Microarray technology is one of the significant achievements in biotechnology history and developed 

during the second half of the 1990s.  An early article defining the application of DNA microarray technology to 

expression analysis was published in 1995 by Mark Schena and his colleagues at Stanford University [1].In 

broadest term, microarray technology may be defined as a high-throughput technology to examine the parallel 

gene expressions levels of thousands of genes at the same time.  Precisely, microarray places an orderly 

arranged of many gene sequences in a grid.  The grid that is often used is a glass slide. In general, a single 

microarray slide may contain thousands of spots.  Each spot signifies a single gene and all of them representing 

the entire set of genes of an organism [2].  The technology has made a novelty discovery since its development 

and caught many researchers’ attention. A number of researchers admit that the breakthrough of this technology 

is a vital research instrument.  The widespread of microarray technology is largely due to its ability to give the 

quick results, relatively easy to use and precisely perform simultaneous analysis of thousands of genes in a 

massively parallel manner to researchers in one experiment, hence providing valuable knowledge on gene 

interaction and function [3].   

The challenge of understanding the microarray gene expression has led to the development of new tools in 

the field of statistics for the analysis of gene expression data such as for the detection of differentially expressed 

genes between different biological states.  Generally, the purpose of differential gene expression studies is to 

find those genes that produce different expression levels between samples [1].  All cells in the human body 

contain unique genetic material and the same genes are not active in every cell. Hence, the researchers will 

understand how these cells function normally and how they are affected when various genes do not perform 

properly by analyzing which genes are active and inactive in different cell types. For example, a researcher 

might wish to know the effect of certain treatment by examining the differences in gene activity between 

treatment and control samples.  As a result, the researcher will understand exactly how the treatment affects the 
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genes and be able to develop more effective treatments later.  Hence, microarray technology helps to further the 

study based on the gene activity.  The gene expression from each sample is measured using microarray and the 

significantly different gene expression relative to treatment is calculated to conclude the effectiveness of 

treatment.  The identification significantly changed gene study is also known as differential gene expression. 

This study is to focus on differential gene expression in gene set analysis [4] and detect the differential 

gene sets that produce different expression levels between samples.  The method is introduced in Section 3 after 

a description on the properties of Hotelling’sT
2
statistic in Section 2.  The performance of the proposed method 

is evaluated in Section 4 through simulation compared with existing methods.  

 

2 Hotelling's T
2
 Statistic 

The Hotelling'sT
2
 is named after Harold Hotelling in 1931, who developed the test statistic as a natural 

generalization oft-statistic.  The test statistic develops in multivariate statistic which tests for univariate 

problems would make use of t-statistic.  On the contrary, the t-statistic disregards for the correlation structure.  

This classical test statistic solves the univariate procedure problem and takes into account the correlation 

relationship between data. 

The acceptable of this statistic in microarray analysis was due to the characteristics’ suitability with the 

gene expression background of data.  This method took into account the multidimensional structure of 

microarray data.  The information for gene interactions was utilized to allow for finding genes whose 

differential expressions which cannot detectable by univariate methods.  The Hotelling’sT
2
 statistic gave a 

prediction rate that is at least as good as univariate procedure including the t-test.  Furthermore, the test statistic 

is found to be more sensitive compared to the univariate t-statistic for the detection of the gene with certain 

conditions and summarized the Hotelling’sT
2
 to be more efficient [5]. 

Let n represent the number of slides/samples, and p was the total number of genes in a gene set.  Let 
ki

X be 

the expression level for gene i (where i=1, . . . , p) of sample k (where k=1, . . . , n ) from the treatment group 

and 
kjX be the expression level for gene j (where j=1, . . . , p) of sample k (where k=1, . . . , n)from the control 

group. The expression level vectors for samples k from the treatment and control groups can be expressed as 

i
X = (

1kX , . . . ,
ki

X )
T
and jX = (

1k
X , . . . ,

kjX )
T
, respectively.The unknown population covariance 

matrix, ∑ ,was typically estimated by the sample covariance matrix, Sij , for many situations.  The sample 

covariance matrix, Sij was defined as:  

 

                                     ( )( )∑
=
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−
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where
ki

X  and kjX  is the k-th observation of the variable 
i

X  and jX  respectively.The mean, 
i

X was defined 

as: 
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and the jX is the mean for kjX .  Suppose we have n1 and n2 observations from two groups, such 

that nnn =+
21

. Then, consider testing the null hypothesis that the two groups have equal multivariate means 

versus the appropriate alternative hypothesis, 
210

: µµ =H against 
211

: µµ ≠H  .  The test statistic based on 

Hotelling’sT
2 
was defined as: 

( ) ( )
jiji

XXSXX
n

nn
T −

′
−=

− 1
212

 
                 (3) 
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 For two subsamples, the pooled sample covariance matrix, S, was calculated as: 

     

( ) ( )( ))2(2
)1(

1 11
2

1
SnSn

n
S −+−

−

=  
      

(4) 

 

The sub-sample covariance matrix, )1(
S  and )2(

S were defined as in equation (1).  The maximum 

likelihood estimator was employed to obtain the sample covariance matrix.  This estimator was unbiased when 

the number of samples is larger than the number of variables.  As a result, the sample covariance matrix in 

Hotelling's T
2
 poses the singularity problem when p is near to n and it is not invertible for p to exceed n. Thus, it 

will normally cause problem in hypothesis making as the test statistic become unstable.  

3 Proposed Shrinkage Covariance Matrix  

The proposed methods provide an alternative to estimate covariance matrix using shrinkage method based on 

the definition of [6, 7, 8, 9].  The approach was adapted to Hotelling'sT
2
 and was extended to gene set analysis 

in microarray study.  There were three proposed methods and we referred them as ShrinkA, ShrinkB and 

ShrinkC for the rest of this study.  Generally, the algorithm for the three proposed methods was outlined below: 

 

Step 1: We prepared the data sets with the preprocessing procedure by using suitable normalization and 

transformation method.  

 

Step 2: We computed the shrinkage target.  

 

Step 3: We searched for the optimal shrinkage intensity by using related definition. 

 

Step 4: We replaced the sample covariance matrix in Hotelling’s T
2 
by using the results in Step 2 and Step 3. 

 

Step 5: We calculated theHotelling’s T
2 
for each of all the gene sets that were measured in datasets. 

 

Step 6: We permuted samples for each gene set and declared as significant gene sets according to the 

permutation testing. 

 

The proportion of each component in shrinkage estimation was: 

 

  ( ) ijijshrink STS αα −+= 1                             (5) 

 

where shrinkage target,
ij
T and shrinkage intensity,α was defined as: 

 

   
















= 1,min,0max
n

κ

α                  (6) 

 

whereκ was a constant and n is the number of samples.  The constant κ  could be written as: 

 

   
γ

ρπ
κ

−

=                  (7) 

 

where π was the sum of asymptotic variances of the entries of the sample covariance matrix scaled by n .  

ρ was the sum of asymptotic covariances of the entries of the shrinkage target with the entries of the sample 

covariance matrix scaled by n .  γ
 
was the measurement of the misspecification of the (population) shrinkage 
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target.  If κ  were known, we could use n/κ  as the shrinkage intensity in practice.  Unfortunately, κ  is 

unknown, so we searched for a consistent estimator for κ by κ̂ . This is done by finding consistent estimators 

for the three estimatorsπ , ρ  and γ  that is π̂ , ρ̂ and γ̂ .  The proposed methods ensured the covariance matrix 

was always a positive definite and well defined.  Table 1 showed the shrinkage target and shrinkage intensity 

for ShrinkA, ShrinkB and ShrinkC. 

 

4 A Simulation Study 

In order to evaluate the performance in the shrinkage covariance matrix, simulated data sets were 

developed by introducing the inter group correlation structure into the simulated data to imitate the multivariate 

structure in gene set.  For a better interpretation of multivariate structure in gene set, the correlation matrix was 

used.  The multivariate normal distribution data was generated using mvrnorm function in the MASS package. 

The generated data was assumed as correlation matrix using rcorrmatrix function in the clusterGeneration 

package.  All programming codes and packages were written in R language (http://cran.r-project.org/).  

 

Table 1. The shrinkage combinations for ShrinkA, ShrinkB and ShrinkC 
Type Shrinkage Target Shrinkage Intensity 
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The separation between the two groups measured the difference in the means of the multivariate normal 
distributions where µ was the vector of gene means andΣ was the covariance matrix of the gene expression on 

the following density function: 
 

  ( )
( )

( ) ( ) 2/

2/12/,.......,1

1

2

1 µµ

π

−∑
′

−−
−

∑
=

xx

p
p

exxfx     (8) 

 
The gene set variances were set at one and assumed that the number of samples for both groups is equal.  

Each case was permutated 10000 times and 100 data sets were generated.  The simulated data sets were set to 
explore the performance of proposed method for two hypotheses: Case 1: No difference (separation) exists 
between two groups (null hypothesis) and Case 2: There was difference (separation) exists between groups 
(alternative hypothesis). 

The performance of our approach was evaluated by comparing the results with those obtained from two 
other methods: (1) by using principal component analysis to solve the high dimensionality problem proposed by 
Kong et al. [10] denoted as KPCA, and (2) the Regularized Covariance Matrix Approach (RCMAT) introduced 
by Yates and Reimers [11].  The RCMAT is quite similar with our proposed methods but the covariance matrix 
in Hotelling’sT

2 is regularized using the following identity matrix to replace the shrinkage target in equation (5): 
 

 




≠

=
=

jiif

jiif
Tij

0

1

                 (9) 

 
Since the shrinkage target was penalized to zero and the diagonal to one, consequently information from 

the covariance matrix is not fully utilized.  The shrinkage intensity, α in equation (6) was reduced from 1 
towards 0 by increments of 0.01 and the optimum shrinkage intensity would be achieved when the smallest 
positive eigenvalue was bigger than the reciprocal of the number of genes in the gene set.  The optimum 
intensity would ensure the covariance matrix is a positive definite and invertible.  RCMAT and KPCA were 
comparable with our approach since they were also using Hotelling’sT

2 for testing differentially expressed gene 
sets.   

4.1 Case 1: No difference (separation) exists between two groups (null hypothesis) 

A simulation study was performed with parameter combinations under the null hypotheses as display in 
Table 2.  A total of four parameter combinations consisted of two default setting and two changed settings were 
examined.  The default setting used major of axis of separation and no amount of separation at all.  For each of 
the parameter combinations in this simulation study, parameters setting were changed relative to the default 
setting: 
 

i. Increasing number of variables of 10 and 30; 
ii. Increasing number of sample sizes of 10, 20 and 50; 

iii. A major axis of variation and; 
iv. No amount of separation. 

 
The above parameter combinations were employed to monitor the performance when the three conditions 

are applied: n>p, n=p and n<p.  The distribution of p-values was evaluated when no difference exists between 
the groups in the mean of expression measures of genes in the gene set.  In a two-group comparison, each p-
value between 0 and 1 was equally likely. The distribution of p-values for ShrinkA, ShrinkB, ShrinkC, RCMAT 
and KPCA when no difference was detected between the two groups is displayed.All the 100 ranked p-values of 
the simulation results were displayed using QQ-plot against the uniform distribution.   
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Table 2. The parameter combinations under null hypothesis 
Parameter combinations No. of variables Sample size Axis of variation Amount of separation

1 10 10 Major 0.00 

2 10 20 Major 0.00 

3 10 50 Major 0.00 

4 30 10 Major 0.00 

5 30 20 Major 0.00 

6 30 50 Major 0.00 

 

4.2 Case 2: There is difference (separation) exists between groups (alternative hypothesis) 

We focused on the power of our proposed methods and discovered that our simulation study spans both 
highly significant to clearly insignificant separations as determined by the mean nominal p-value.  The 
simulated data for twelve parameter combinations were generated under alternative hypothesis as summarise in 
Table 3.  Four parameter settings, which included one default setting and three altered settings were studied.  
For presentation, the default setting used only 20 samples.  Specifically, the simulation setup for each of the 
parameter combinations with three variables were altered relative to the default setting was as follows: 
 
i. Increasing number of variables of 10 and 30; 

ii. Number of samples is 20; 
iii. Different axis of variation of a major axis of variation and a minor axis of   variation and; 
iv. Increasing amount of separation between groups of 0.25, 0.50 and 1.00.   
 

Such parameter combinations above were generated to monitor the performance when the two conditions 
were applied: n>p and n<p.  Then, all results of the cumulative distribution function of nominal p-values were 
illustrated.   

4 RESULTS AND DISCUSSION 

 
The simulation study was performed using four parameter combinations consisted of major of axis of separation 
and no amount of separation at all as default settings and two set of variables; 10 and 30 and three different 
sample sizes; 10, 20 and 50 (refer Table 2 for detail explanation of parameter combination).  The distribution of 
p-values was evaluated when no difference existed between the groups in the mean of expression measures of 
genes in the gene set.  Table 4 provided a summary of the mean nominal p-values of ShrinkA, ShrinkB, 
ShrinkC, RCMAT and KPCA under no difference (separation) existed between two groups (null hypothesis).   
 

Table 3. The parameter combinations under alternative hypothesis 

 
Parameter 

combination 

No. of variables Sample size Axis of variation Amount of 

separation 

1 10 20 Major 0.25 

2 10 20 Minor 0.25 

3 10 20 Major 0.50 

4 10 20 Minor 0.50 

5 10 20 Major 1.00 

6 10 20 Minor 1.00 

7 30 20 Major 0.25 

8 30 20 Minor 0.25 

9 30 20 Major 0.50 

10 30 20 Minor 0.50 

11 30 20 Major 1.00 

12 30 20 Minor 1.00 
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Table 4. Mean nominal p-values of ShrinkA, ShrinkB, ShrinkC, RCMAT and KPCA under no difference 
(separation) exists between groups. 

 

From above Table 4, the highest mean p-value when number of variables was 10 and number of samples 
was 10 or parameter combination 1 was belong to KPCA with p-value 0.4874.   When the condition number of 
variables was 10 with number of samples was 30 and 50 producing n>p condition (parameter combination 2 
and parameter combination 3), ShrinkB had the highest mean p-value, 0.5316 and 0.5104 respectively and also 
when number of variables is 30 and number of samples was 10 (parameter combination  4) was 0.5624.  In 
addition, RCMAT had 0.5144 as the highest mean p-value when number of variables was 30 and number of 
samples was 20 (parameter combination 5).  The condition with number of variables was 30 and number of 
samples was 50 (parameter combination 6), the highest mean p-value once again belong to KPCA with 0.4910.  

Table 5 contained the mean nominal p-values of ShrinkA, ShrinkB, ShrinkC, RCMAT and KPCA under 
alternative hypothesis (refer Table 3 for detail conditions).    When number of variables increased from 10 to 30 
with fixed number of samples, the mean p-value shifted from 0.3261 to 0.3373 for ShrinkA and 0.3362  to 
0.3548 for ShrinkC along a major axis of variation and amount of separation is 0.25 (parameter combination 1 
to parameter combination 7).  On the other word, ShrinkA and ShrinkC exhibited good performance with 
increasing number of variables with lower mean p-value.   For same conditions, the ability of detectionwas 
followed by RCMAT with mean p-value shifted from 0.3457 to 0.4213, ShrinkB from 0.3866 to 0.0577 and 
KPCA from 0.4053 to 0.4430.   

For the increased of amount of separation to 0.5 and 1.0 along a major axis of variation when number of 
variables increased from 10 to 30 with 20 number of samples (parameter combination 3 to parameter combination 
9 and parameter combination 5 to parameter combination 11), the same situation was also found which the mean 
p-value of ShrinkA and ShrinkC still lower than other methods.  We suggested that the detection power of the 
ShrinkA and ShrinkC method increased as the amount of separation between two groups increased. 

From mean p-value, it showed that shrinka easily detected the difference (separation) between groups 
compared to other methods when axis of variation was changed from major to minor at most of the conditions.  
Interestingly, we observed that RCMAT and ShrinkC detected the separation easily, in that respective order.  
For example, when the axis of variation was shifted from major to minor, the mean p-value increases from 
0.0001 to 0.0551 for shrinka, from 0.0014 to 0.0399 for rcmat, from 0.0040 to 0.0516 for shrinkc, from 0.0192 
to 0.0956 for KPCA and from 0.0815 to 0.1519 for shrinkb along the amount of separation was 1.0 (n = 20) 
with ten variables. (parameter combination 5 to parameter combination 6). 

 

Table 5. Mean nominal p-values of ShrinkA, ShrinkB, ShrinkC, RCMAT and KPCA under there is difference 
(separation) exists between groups. 

Parameter combinations Method 

Shrink A Shrink B Shrink C RCMAT KPCA 

1 0.4648 0.4666 0.4698 0.4822 0.4874 

2 0.4993 0.5316 0.5094 0.5177 0.5221 

3 0.5030 0.5104 0.4962 0.4897 0.5063 

4 0.5473 0.5624 0.5398 0.5223 0.5363 

5 0.5001 0.4793 0.5009 0.5144 0.5100 

6 0.4445 0.4766 0.4430 0.4631 0.4910 

Parameter combinations Method 

Shrink A Shrink B Shrink C RCMAT KPCA 

1 0.3261 0.3866 0.3362 0.3457 0.4053 

2 0.4142 0.4738 0.4284 0.4175 0.4764 

3 0.3255 0.2656 0.1183 0.1223 0.2395 

4 0.2230 0.3547 0.3027 0.2877 0.3459 

5 0.0001 0.0815 0.0040 0.0014 0.0192 

6 0.0551 0.1519 0.0516 0.0399 0.0956 

7 0.3373 0.4577 0.3548 0.4213 0.4430 

8 0.4493 0.4766 0.4532 0.4735 0.4669 

9 0.1324 0.4506 0.1516 0.0209 0.3912 

10 0.3748 0.4697 0.3752 0.3875 0.4395 

11 0.0004 0.2575 0.0006 0.0050 0.1560 

12 0.0159 0.4125 0.1525 0.1532 0.3336 
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5 Conclusion 

The understanding of biological data has led to the development of new methods in statistics such as [12] 
and [13].  In this study, we concluded that ShrinkA, ShrinkB, ShrinkC, RCMAT and KPCAmethods produced 
conservative bias comparative to the expected p-value.  The deviation from the 45° straight line of q-q plot also 
was getting larger when number of variables were getting higher than number of samples.  However, there was 
a good agreement between uniform distribution and ShrinkB and KPCA to accept the null hypothesis.  On the 
other word, when no difference (separation) existed between two groups, the ShrinkB and KPCA performed 
better than other methods.   

Basically, the real differences between the groups were easier detected with n>p than n<p conditions for 
all methods with certain axis of variation and amount of separation.  Furthermore, from axis of variation’s 
perspective, the differences between the groups with any conditions with a major axis were easier detected 
rather than a minor axis because of the larger variance.  As we expected, the differences between groups for 
large amount of separation were easier detected compared with smaller amount of separation.  All methods 
were performed consistently according to conditions described earlier but detection ability of ShrinkA and 
ShrinkC method was higher than other methods across conditions especially along a major axis of variation. 

This study discovered the potential of the shrinkage approach to estimate the covariance matrix for 
microarray data, particularly in comparing gene expression between independent samples.  The shrinkage 
covariance matrix approach showed promising results for testing the differential gene sets expression compared 
to two established methods.  This research provided a new platform and opportunities for further research or 
studies in microarray-based gene sets and the results were expected to be of interest for further applications in 
other areas of research with similar data characteristics. 
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