

J. Appl. Environ. Biol. Sci., 4(7S)282-286, 2014

© 2014, TextRoad Publication

ISSN: 2090-4274
Journal of Applied Environmental

and Biological Sciences

www.textroad.com

* Corresponding Author: Adnan Abid, Department of Computer Science, University of Management and Technology,

Lahore, Pakistan.

Pedagogically Effective Subset of C++

Muhammad Shoaib Farooq
1,2

, Sher Afzal Khan
2
, Farooq Ahmed

3
, Saeed Islam

2
,

*
Adnan Abid

1

1
Department of Computer Science, University of Management and Technology, Lahore, Pakistan.

2
Abdul Wali Khan University, Mardan, Pakistan.

3
Faculty of Information Technology, University of Central Punjab Lahore, Pakistan.

Received: September 1, 2014

Accepted: November 13, 2014

ABSTRACT

Programming languages normally grow in size due to feature multiplicity and backward compatibility. This

is the main reason behind the usual practice of teaching a subset of an easy and useful language to the

students in an introductory course in computer programming. In this research, we propose a subset of C++

which is based on a conceptual framework to evaluate a First Programming Language (FPL), proposed in our

earlier work. We believe that the proposed subset results into a pedagogically more effective C++, and can

help improving the teaching and learning experience for a first course in computer programming.

KEYWORDS: First Programming Language, Language Subsetting, Computer Programming.

1 INTRODUCTION

The Programming languages continuously evolve and the size of a language increases by adding new

features, and by ensuring the backward compatibility of constructs. This results into feature multiplicity

problem [2], and due to this problem the languages offer a longer learning curve to the students, while at the

same time, the instructor is unable to teach whole language. Consequently, the instructor teaches the subset

of language in tight schedule of one semester course. These subsets may be used to code every type of

problems, but in order to understand the program written by others, a student should learn whole language

[1] [4] [6]. There exist no special guidelines which help the course instructors in creating such proper subsets

of a programming language. Alternatively, there is another approach usually termed as pseudo language

approach defined by educators in CS Community. A pseudo language is typically a subsets of an existing

mainstream programming language with some extra features, in order to teach the basic programming

concepts[8] [7] [9]. The idea of a pseudo language is to create code with as simple syntax as possible. So a

student can pay more attention to learning programming concepts, and may focus more on problem solving

skills instead of learning typical syntax. This approach has not been so popular, mainly for the reason that it

involves some extra features which do not belong to core language. Furthermore, due to these new features it

requires a new compiler implementation.

2 RELATED WORK

Defining an effective subset of programming languages for pedagogical and safety purpose has been a

common practice for decades. Common Business Oriented Language (COBOL) is a first language that has

been subsetted due to large number of redundant constructs and its complex syntax for novices [11] [12]. Ada

is derived from pascal by applying subsetting rules and then SmallAda has be derived for novices from

whole set of constructs from Ada programming language [14] [15]. Mini Java a subset of java was defined by

Eric Roberts from Stanford University for purpose of effectively teaching and learning [16]. It’s a common

practice by choosing best available constructs and discarding redundant, unsafe, and semantically

ambiguous constructs from a given language to make its pedagogically effective [11] [13] 0. Another methods

is to choose subset of language by reflection and overloading [10].In the same way, recently some research

282

Farooq et al.,2014

 0 [2] has been conducted on the evaluation and specification of introductory programming languages which

can be very useful in defining these subsets.

3 Usage of framework to make a language a better FPL

Farooq at el. [1] proposed a comprehensive framework for the assessment of first programing

language. This framework consist of technical and environmental features, using these features we can

evaluate conformance of programming language toward a healthy first programming language. In order to

consolidate an existing language, the proposed framework approach ensures that a language should not be

modified so as to add new features in it, which are demanded by the framework, but are not a part of the

language. Therefore, no new features should be added to a language, so as to increase its conformance to

the proposed framework. As an example, if a language does not support generic programming, then it

should not be modified in such a way that new constructs are added to it, so that it starts supporting generic

programming. Certainly, such a change in the language is a considered a major change in existing language

and, in general, these types of changes are introduced to the languages in newer versions. So, such

improvements in a language are the responsibility of the language designers.

Secondly, improve the language in the following two possible ways: (i) if possible, apply constraints

on the usage of existing constructs so as to improve their compliance to the requirements of the proposed

framework; (ii) eliminate the constructs which are problematic, and with their elimination the capabilities

of a language are not affected. Generally, such constructs are redundant, and cause the problems like safety,

readability, reliability, maintainability etc.

Now, the elimination of constructs means that such constructs are no more available to the

programmer, and this elimination can be enforced with the help of a stricter pre-processor. Similarly, a

smarter pre-processors along with more sophisticated IDEs should be used to apply the constraints on the

usage of the language constructs so as to align their usage according to the considerations put forth by the

framework [1]. The framework is composed of two main feature sets, namely, technical and environmental

features.

Above all, the proposed method for the improvement of an existing language does not add any new

features to it, and restricts the usage of conflicting, unsafe, and redundant constructs so as to increase the

suitability score of a language based on the proposed framework. It is pertinent to mention here, that the

improved version of the language would produce valid code, which can be run by using any compiler of the

language. The reason is fairly simple, i.e. the improved language will have fewer constructs than the

existing language by applying subsetting and thus, removing the unwanted constructs. Secondly, by

applying restrictions on the usage of constructs again allows subsets of the ways a construct can be used in

the coding of a language. Therefore, all programs written in the improved language must be valid programs

according to the original language as well.

3 Constructs Selection/Rejection of C++ based on Conceptual Framework.

This section presents the discussion on the improvement of C++, which is a widely used FPL, so as to

increase its conformance to the defined framework. Firstly, this section considers subsetting of C++, where

the problematic constructs are eliminated from the targeted newer C++. To this end, we focus on the C++

constructs which are used in an introductory course in computer programming, which include, data type,

modifiers, life time, operators, conditional structures, loops, arrays, and functions. As a result in Table 1, all

constructs related to the afore mentioned topics of the language have been presented under specific

construct types, and each for each rejected construct the conflicting feature/sub-features have been

mentioned. Resultantly, this section provides us with a cleaner subset of C++ which eliminates some

language constructs, and hence, increases its conformance to the proposed framework.

283

J. Appl. Environ. Biol. Sci., 4(7S)282-286, 2014

Table 1.Subset of C++
C++ Language Construct

Type Subtype Selected Comment

Data Type int Yes

Long No Learning Overhead for long literal

e.g. 24l
Feature multiplicity

Float No Learning Overhead for float literal

e.g. 2.25f

Feature multiplicity

double Yes

Char Yes

Bool Yes

Void Yes

string Yes

wchar_t No Feature multiplicity

Modifiers signed No Feature multiplicity

unsigned No Feature multiplicity

short No Feature multiplicity

Long No Feature multiplicity/Learning
Overhead required

register No Feature multiplicity/Learning

Overhead required

const Yes

Life Time auto (Stack Dynamic) No Orthogonality/Consistent Rule

static local variable No Orthogonality/Consistent Rule

Operators Arithmetic Binary Operators Yes

Arithmetic unary Operators (-,+) No Enforceability of Good Habits

Arithmetic pre and post increment

operators (++,--)

No Enforceability of Good Habits/No

Side Effects

Relational Operators Yes

Logical Operators Yes

Assignment Operator (=) Yes

Compound Assignment Operators
(+=,-=,*=,/=,%=)

No Enforceability of Good Habits/No
Side Effects

Bitwise Operators (<<,>>,~,^,|,&) No Learning Overhead

Comma Operator (,) No Quality Coding Standard/MISRA [5]

sizeof No Enforceability of Good Habits/Side

Effects

Language

Constructs

(condition)

If-else Yes

 switch No Feature Uniformity/Feature

Multiplicity

Ternary Operators (: ?) No Feature Uniformity/Feature
Multiplicity Enforceability of Good

Habits

Language

Constructs

(Loops)

For loop No Feature Uniformity/Feature
Multiplicity

While loop Yes

Do-while loop No Feature Uniformity/Feature

Multiplicity

Language

Constructs

(Control jump)

break No Feature Uniformity/Feature
Exclusiveness

Quality Coding Standard

continue No Feature Uniformity/Feature

Exclusiveness

284

Farooq et al.,2014

Quality Coding Standard

goto No Feature Uniformity/Feature

Exclusiveness

Quality Coding Standard

return Yes

Arrays C-Style Array No Security/Control over Array Index
out of Bounds

Vector Yes

String Yes

Type Conversion

C Style Explicit Type Casting No Security

Strongly Typed

Static_cast Yes

cont_cast Yes

dynamic_cast Yes

reinterpt_cast No Strongly Typed

Functions Parameter passing by reference using

pointer

No Security

Parameter passing by reference using
reference variables

Yes

Default value of function arguments Yes

Command Line Arguments Yes

C Style unspecified number of

arguments

No Readable Syntax

Function Overloading Yes

Passing Array to functions using

Pointers

No Security/Array index out of bounds

Comments Mega Comment #if …….#endif No Quality Coding Standard/Comments

Block Comment /*…………..*/ No Quality Coding Standard/Comments

End of Line Comment // Yes

4 Conclusion

In this work we propose a proper subset of C++ programming language to make it pedagogically

effective, easy to learn language. The language improvement process mainly involves i) preprocessing, and

ii) subsetting. We propose preprocessing, where certain types of restriction can be applied through rewriting

language lexical, syntax and semantic preprocessor. Whereas, we propose the usage of subsetting where we

can easily eliminate redundant feature from language due to feature multiplicity. These new constraints

employed in the preprocessor shall improve its ability to perform lexical, syntax, and semantic analyses.

Therefore, the conformance of C++ to the proposed framework can be improved in many ways using a more

sophisticated preprocessor. After that we use these guidelines on C++ for creating proper subset. Every

program written using this subset is a valid program of C++.

REFERENCES

[1] Farooq, Muhammad Shoaib, Sher Afzal Khan, Farooq Ahmad, Saeed Islam, and Adnan Abid. "An

Evaluation Framework and Comparative Analysis of the Widely Used First Programming

Languages." PloS one 2014; 9(2) : e88941.

[2] Muhammad Shoaib Farooq, Sher Afzal Khan, Adnan Abid A Framework for the Assessment of a

First Programming Language, Journal of Basic and Applied Scientific Research, 2012; 2(8): 8144-

8149.
[3] Muhammad Shoaib Farooq, Adnan Abid, Sher Afzal Khan, Muhammad AzharNaeem, Amjad

Farooq, Kamran Abid, A Qualitative Framework for Introducing Programming Language at High

School, Journal of Quality and Technology Management, Punjab University, Pakistan. 2012; 8(2).

[4] DePasquale, P., Lee, J. A., & Pérez-Quiñones, M. A. “Evaluation of subsetting programming

285

J. Appl. Environ. Biol. Sci., 4(7S)282-286, 2014

language elements in a novice's programming environment”. ACM SIGCSE Bulletin, 2004; 36(1),

260-264.

[5] Hatton, L. Safer language subsets: an overview and a case history, MISRA C. Information and

Software Technology, 2004; 46(7), 465-472.

[6] DePasquale, P. “Subsetting language elements in novice programming environments”.

In Proceedings of the RESOLVE Workshop 2002; pp. 108-111.

[7] Lusth, J. C., Kraft, N. A., &Tacey, J. “Language subsetting via reflection and overloading”.

In Frontiers in Education Conference, 2009. FIE'09. 39th IEEE 2009, October; pp. 1-6. IEEE.

[8] Harvey, B., &Mönig, J. Bringing “No ceiling” to scratch: can one language serve kids and

computer scientists. Proc. Constructionism, 2010.

[9] Federici, S.“A minimal, extensible, drag-and-drop implementation of the C programming

language”. In Proceedings of the 2011 conference on Information technology education, 2011

october; pp. 191-196.ACM.

[10] Lusth, John C., Nicholas A. Kraft, and James Tacey. "Language subsetting via reflection and

overloading." Frontiers in Education Conference, 2009. FIE'09. 39th IEEE.

[11] Ben-Ari, Mordechai, KevlinHenney. "A critique of the advanced placement C++ subset." ACM

SIGCSE Bulletin,1997, 29(2): 7-10.

[12] Sammet, J. Programming Languages: History and Fundamentals, 1st ed. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1969.

[13] Sebesta, R. W. Concepts of Programming Languages, 4th ed. Addison-Wesley, 1999, ch. 1, p. 9.

[14] Webber, A. B. The Pascal Trainer. In Proceedings of the Twenty Seventh SIGCSE Technical

Symposium on Computer Science Education (New York, New York, March 1996, Association

for Computing Machinery, pp. 261–265.

[15] Feldman, M. B., Lopes, A. V., and P´erez-Qui˜nones, M. SmallAda: Personal Computer

Courseware for Studying Concurrent Programming. In Proceedings of the Twenty-First SIGCSE

Technical Symposium on Computer Science Education, 1990, ACM Press, pp. 206–211.

[16] Roberts, E. (2001) An Overview of MiniJava. In Proceedings of the Twenty Seventh SIGCSE

Technical Symposium on Computer Science Education, ACM Press,2001, 1–5.

286

