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ABSTRACT 

 

An estimation of a regression is said to be superior if it is robust and resistant towards the presence of 

multicollinearity, outliers or non-normality. With regard to these problems, estimation using the OLS is 

inefficient since it could not produce the least variance. Disregarding this problem would potentially lead to 

severe statistical problems. Therefore, the main objective of the study is to employ a combination of a 

bootstrapping technique and robust methods  in ridge regression model for data with simultaneous problems 

of multicollinearity and multiple outliers. This study employed the fixed - x resampling technique for robust 

ridge regression. The proposed method was expected to reduce the effect of the problems to the estimation 

results by producing lower standard error values as compared to the existing methods. The results of the 

study showed that the proposed technique was able to produce better parameter estimates with lower 

standard error values. 

KEYWORDS:  Bootstrap, Fixed-x resampling, Multiple Outliers; Multicollinearity 

 

1 INTRODUCTION 

 

A linear regression is used mainly to model a relationship between two or more than two variables. In 

general, the most popular method used for regression is Ordinary Least Squares (OLS) for its ease and 

simplicity. The OLS method is claimed to be unbiased, efficient and consistent estimator as compared to other 

linear unbiased estimators. However, this superiority features can be held only if the assumptions of classical 

linear regression model are satisfied. If the assumption is violated, the OLS method will no longer produce the 

least variance, leading to the inefficiency in estimating a model. One of the assumptions is that there is no exact 

linear relationship between the explanatory variables. Multicollinearity is said to present if this assumption is 

violated.  In the presence of multicollinearity, the OLS estimator will produce infinite variance, which could 

lead to misleading interpretation of test statistics. If the purpose of a study is merely to predict the values of the 

dependent variable, multicollinearity is not a problem. However, the real issue arises if the study aims for 

parameter estimation. This is due to that, multicollinearity inflates the standard error values. A severe issue is 

concerned when the situation is affected by the presence of outliers. In general, outliers can be regarded as an 

observation that behaves differently as compared to the rest of observations. The presence of outliers will 

distort the parameter estimation of a model, hence inflate the statistical test and lead to misleading conclusions. 

Most of regression analysis assumes normality assumption of the error distribution. However in practice, there 

is a situation where the error distribution is not normal. In this case, disregarding the non normality of the error 

distribution will affect the estimation of a model.  

Ridge regression was firstly initiated by Hoerl [4] and Hoerl and Kennard [5] by introducing a biasing 

parameter with more stable and precise than the OLS estimator in handling the multicollinearity problem. 

Robust estimation is used mainly to handle the outliers problem by downweighting the effect of outliers. 

Robust estimator used in this study is a MM - estimator that was introduced by Yohai [10]. The MM-

estimator is an extended version of M-estimator that was previously proposed by Huber [6]. This method is 

a combination of the properties of high asymptotic relative efficiency of M-estimator with the high 

breakdown of a class of S-estimator. Habshah and Marina [3] proposed a combination of ridge regression 

and robust techniques for multicollinearity and outliers problems. The study was further extended to 
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weighted ridge regression with robust M-estimator (Siti Meriam et al., [11])  and robust MM-estimator (Siti 

Meriam et al., [12]).  

This study aims to propose an alternative method that is resistant to the presence of simultaneous 

problems of multicollinearity and multiple outliers, using a combination of bootstrapping technique and 

robust methods in ridge regression. We propose a slight modification from what have been found in the 

literatures, which is to combine the bootstrapping method and robust ridge regression. We would like to 

examine the superiority of the proposed method as an enhancement to the existing methods when handling 

simulataneous problems of multiple outliers and multicollinearity. Bootstrap is a re-sampling method that is 

commonly used to estimate bias, standard error and to construct the confidence interval of an estimator. 

Efron and Tibshirani [2] stated that bootstrap is about treating the sample data as a population from which 

the repeated samples are drawn. The standard errors and sampling distribution of the robust regression 

estimates can be estimated from the drawn samples. In regression, bootstrap method is preferred because it 

relaxes the assumption that the error distribution must follow the normality assumption (Norazan et al., [8]. 

According to Ohtani [9], bootstrap method is reasonable to evaluate the precision of parameter estimate 

obtained using ridge regression estimation by Monte Carlo experiments, which observed through its 

standard error. The classical bootstrap usually is based on the OLS estimate, which is not robust to the 

presence of outliers. Norazan et al. [8] proposed Weighted Bootstrap with Probability (WBP) in comparison 

with fixed-x resampling, random-x resampling and Diagnostic-Before Bootstrap estimates. The bootstrap 

method is able to produce better estimation, as the problem of outliers arise. This is due to that bootstrap 

sample is done by resampling with probabilities to ensure that the outlying observations have smaller 

probabilities of selection. They found that WBP is the best estimator as it is consistently provides good 

estimates and shortest confidence interval. 

This paper is organized as follows – methodology of this research is discussed in Section 2; in Section 3 

the newly proposed technique and its performances are presented; and the final conclusion is made in 

Section 4.  

2   METHODOLOGY 

 

A simulation study was designed to assess the performance of OLS and robust ridge regression 

estimator incorporated with the bootstrapping method. A simulated data were generated using the multiple 

linear regression model based on combinations of several regression conditions as follows: 

i) Sample size (n) is 25, 50, 100 and 200, 

ii) Two types of rho, ρ ;  ρ  is fixed to 0.9 and ρ  is uniformly distributed, U(0.10, 0.98), 

respectively, 

iii) Percentage of outliers, α  is  5%, 10%, 15% and 20%. 
Based on the condition stated above, we study the performance of the estimators according to severity 

of multicollinearity by using different degrees of correlation, ρ  between the variables. In addition, the 

effect of sample size, n was also observed. Two explanatory variables were used. At the same time, the 

performances of estimators were observed by increasing the percentage of outliers, α . Thus, for the given 

values of n, α  and ρ , the set of explanatory variables was generated and simulated for 1000 times for all 

five estimators. For this simulation study, the values of true parameters were set to 1. The clean and in-lying 

observations of predictor variables were generated using multivariate normal distribution. The outliers 

observations, bad.n = α % of n were generated based on percentage. The effect of outliers were exposed to 

both x and y-direction. 

There are two commonly bootstrapping techniques used for linear regression analysis. They 

are fixed-x resampling and random-x resampling. This study employed the fixed-resampling 

technique. The procedure for bootstrapping robust ridge estimates with fixed x – resampling  is 

discussed as follows: 

151 



J. Appl. Environ. Biol. Sci., 4(7S)150-156, 2014 

 

 

Step 1: Fit a model to the original sample of observations of size n to get β̂  using OLS estimator 

and the fitted values )ˆ,(ˆ β
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This algorithm was then applied using other existing estimators namely, the RIDGE, RMM, WRM and 

WRMM as a replacement to the OLS estimator. For each bootstrap method, B = 1000 bootstrapped random 

samples were generated. For each bootstrapped m
th
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3   FINDINGS 

 

Table 1 presents a simulation result of the bias and standard error of the parameter estimates 
1

β̂ . The 

degree of multicollinearity is fixed to 0.9 to represent a high degree of collinearity among the explanatory 

variables. As we can see from the table, the performance of the OLS estimator is poor since the standard 

error is very high as compared to other estimators. The effect becomes severe as the percentage of outliers 

increases. The OLS estimator without bootstrapping technique shows the worst performance since the 

standard error is larger than the other existing estimators. On the other hand, the incorporation of the 

bootstrap technique reduces the standard error values of the OLS estimator. However, this estimator 

performes poorly as compared to robust ridge regression, particularly when the sample size and the 

percentage of outliers increase.  

Results from the table also display that the WRM seems to be the most resistant estimator towards the 

presence of 5% outliers, by producing the lowest values of bias, 1.078 and standard error, 0.134 as compared 

to the other methods. Further, when the effect of outliers is increased to 20%, it is reported that the WRMM 

estimator becomes the most superior, by producing the lowest standard error value of 0.0080. Surprisingly, 

the OLS estimator outperformed the others when the bias value is the lowest than that of other estimators. 

This scenario occurs when 10% and 20% of outliers were used in the sample. The results indicate that even 

the classical estimator such as OLS is able to outperform others when only the bootstrapping technique is 

considered. 
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Table 1.  Bias and standard errors (in bracket) based on with and without bootstrapping on 1000 runs for 
1

β̂  

using 9.0=ρ  with 2 predictor variables. 

α

% 

Method Without Bootstrapping With Bootstrapping 

n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200 

5 OLS 0.368 0.459 0.486 0.478 3.919 4.093 0.646 2.107 

  [4.743] [3.329] [2.324] [1.654] [4.281] [2.311] [2.396] [1.584] 

RIDGE 0.460 0.485 0.474 0.468 0.555 1.141 0.511 0.617 

  [2.280] [1.581] [1.138] [0.804] [0.777] [1.030] [0.134] [0.500] 

RMM 0.443 0.483 0.467 0.467 0.491 1.253 0.515 0.790 

  [2.095] [1.545] [1.115] [0.803] [0.619] [1.026] [0.138] [0.658] 

WRM 0.482 0.472 0.470 0.468 0.473 1.078 0.520 0.752 

  [2.349] [1.656] [1.172] [0.818] [0.427] [0.976] [0.134] [0.602] 

WRMM 0.449 0.479 0.463 0.468 0.485 1.092 0.515 0.827 

  [2.146] [1.600] [1.142] [0.815] [0.579] [1.075] [0.135] [0.669] 

10 OLS 0.386 0.470 0.485 0.478 10.618 2.012 1.853 0.852 

  [4.776] [3.331] [2.327] [1.653] [4.473] [2.404] [2.350] [1.595] 

RIDGE 0.449 0.495 0.472 0.466 4.292 0.140 0.639 0.469 

  [2.305] [1.570] [1.140] [0.803] [2.809] [0.777] [0.638] [0.321] 

RMM 0.472 0.475 0.471 0.465 4.176 0.109 0.741 0.468 

  [2.257] [1.563] [1.137] [0.803] [2.761] [1.228] [0.833] [0.259] 

WRM 0.478 0.475 0.469 0.467 3.882 0.119 0.788 0.464 

  [2.372] [1.657] [1.171] [0.816] [2.515] [1.055] [0.728] [0.230] 

WRMM 0.488 0.469 0.468 0.466 4.074 0.237 0.800 0.461 

  [2.322] [1.631] [1.167] [0.814] [2.803] [1.151] [0.796] [0.265] 

15 OLS 0.379 0.478 0.482 0.475 1.978 5.288 1.476 0.312 

  [4.765] [3.339] [2.318] [1.651] [4.937] [3.287] [2.179] [1.623] 

RIDGE 0.447 0.499 0.471 0.466 0.511 1.457 0.474 0.498 

  [2.310] [1.573] [1.129] [0.803] [0.181] [1.400] [0.212] [0.184] 

RMM 0.474 0.486 0.471 0.466 0.528 1.449 0.459 0.504 

  [2.310] [1.595] [1.132] [0.803] [0.189] [1.427] [0.188] [0.122] 

WRM 0.480 0.478 0.469 0.467 0.503 1.450 0.459 0.515 

  [2.391] [1.667] [1.168] [0.815] [0.145] [1.415] [0.194] [0.109] 

WRMM 0.492 0.478 0.470 0.467 0.509 1.489 0.455 0.509 

  [2.380] [1.667] [1.167] [0.814] [0.188] [1.346] [0.186] [0.116] 

20 OLS 0.383 0.469 0.479 0.478 2.070 4.540 1.006 0.503 

  [4.839] [3.344] [2.315] [1.653] [4.317] [2.910] [1.853] [1.749] 

RIDGE 0.450 0.492 0.465 0.468 0.502 0.699 0.454 0.469 

  [2.361] [1.585] [1.127] [0.806] [0.207] [1.442] [0.368] [0.268] 

RMM 0.474 0.479 0.465 0.467 0.496 0.507 0.395 0.477 

  [2.359] [1.606] [1.127] [0.807] [0.079] [1.304] [0.493] [0.136] 

WRM 0.479 0.472 0.463 0.468 0.475 0.351 0.421 0.482 

  [2.423] [1.679] [1.159] [0.819] [0.087] [1.321] [0.508] [0.160] 

WRMM 0.490 0.472 0.463 0.468 0.468 0.407 0.357 0.488 

  [2.419] [1.678] [1.158] [0.817] [0.080] [1.289] [0.488] [0.132] 
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Table 2.  Bias and standard errors (in bracket) based on with and without bootstrapping on 1000 runs for 
1

β̂  

using rho, ρ generated from Uniform Distribution, U[0.10,0.98] with 2 predictor. 

α

% 

Method Without Bootstrapping With Bootstrapping 

n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200 

5 OLS 0.471 0.506 0.479 0.494 2.324 0.177 0.481 0.638 

  [2.759] [1.838] [1.276] [1.892] [1.731] [1.881] [1.009] [0.729] 

RIDGE 0.486 0.470 0.453 0.461 0.145 3.468 0.396 0.583 

  [1.447] [1.462] [1.454] [1.459] [0.825] [1.147] [0.238] [0.663] 

RMM 0.478 0.481 0.460 0.466 0.323 3.228 0.380 0.614 

  [1.283] [1.443] [1.264] [1.173] [0.999] [1.116] [0.334] [0.663] 

WRM 0.497 0.478 0.462 0.473 0.092 3.166 0.439 0.572 

  [1.519] [1.518] [1.514] [1.512] [0.800] [1.100] [0.138] [0.633] 

WRMM 0.490 0.488 0.465 0.474 0.269 3.092 0.431 0.585 

  [1.314] [1.489] [1.507] [1.515] [0.860] [1.018] [0.312] [0.646] 

10 OLS 0.444 0.509 0.482 0.493 8.323 0.509 0.397 2.633 

  [2.744] [1.839] [1.278] [0.892] [3.418] [1.385] [1.169] [0.914] 

RIDGE 0.487 0.489 0.497 0.496 0.400 0.416 2.122 0.687 

  [0.928] [0.925] [0.926] [0.927] [0.336] [0.245] [0.951] [0.565] 

RMM 0.482 0.481 0.494 0.492 0.402 0.444 2.438 0.673 

  [0.906] [0.924] [0.932] [0.934] [0.416] [0.142] [1.026] [0.554] 

WRM 0.482 0.484 0.492 0.489 0.448 0.446 2.582 0.632 

  [0.959] [0.959] [0.962] [0.969] [0.425] [0.147] [1.048] [0.529] 

WRMM 0.479 0.479 0.492 0.489 0.456 0.442 2.572 0.677 

  [0.931] [0.951] [0.961] [0.967] [0.398] [0.142] [1.002] [0.519] 

15 OLS 0.419 0.514 0.480 0.493 0.742 4.115 0.163 1.429 

  [2.751] [1.847] [1.275] [0.891] [4.040] [1.421] [1.003] [0.858] 

RIDGE 0.481 0.482 0.481 0.478 0.353 0.422 0.476 0.862 

  [0.686] [0.685] [0.683] [0.681] [0.402] [0.278] [0.202] [0.831] 

RMM 0.481 0.481 0.481 0.478 0.427 0.355 0.469 0.811 

  [0.680] [0.688] [0.687] [0.684] [0.336] [0.362] [0.211] [0.831] 

WRM 0.479 0.479 0.478 0.475 0.464 0.354 0.473 0.910 

  [0.716] [0.713] [0.712] [0.709] [0.299] [0.353] [0.198] [0.877] 

WRMM 0.479 0.479 0.479 0.475 0.465 0.349 0.473 0.823 

  [0.702] [0.712] [0.711] [0.707] [0.326] [0.369] [0.204] [0.841] 

20 OLS 0.428 0.508 0.477 0.495 2.422 1.305 2.765 1.248 

  [2.762] [1.842] [1.275] [0.891] [2.211] [1.514] [2.087] [0.625] 

RIDGE 0.490 0.489 0.491 0.491 0.508 1.435 0.641 0.849 

  [0.491] [0.490] [0.491] [0.492] [0.153] [0.610] [0.321] [0.451] 

RMM 0.491 0.490 0.492 0.492 0.502 1.365 0.622 0.875 

  [0.488] [0.490] [0.492] [0.493] [0.146] [0.592] [0.264] [0.489] 

WRM 0.491 0.490 0.491 0.491 0.518 1.277 0.562 0.812 

  [0.498] [0.496] [0.498] [0.499] [0.144] [0.586] [0.271] [0.482] 

WRMM 0.490 0.490 0.491 0.491 0.513 1.267 0.585 0.826 

  [0.494] [0.496] [0.497] [0.498] [0.140] [0.573] [0.262] [0.475] 
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Simulation study was also done for the case of multicollinearity with rho, ρ generated from Uniform 

distribution, U(0.10, 0.98), and is presented in Table 2. It gives quite similar results as shown in Table 1, in 

which almost all estimators worked very well with bootstrap technique. The WRM estimator has the lowest 

standard errors, 0.138 and 0.198 when the presence of outliers is 5% and 15%, respectively. As the 

percentage increases to 20%, the WRMM estimator has the lowest standard error, 0.140. In addition, the 

lowest bias is produced by the WRM estimator with the value of 0.910, when the percentage of outliers is 

15%.  

The performance of each estimator is summarized in Table 3, in which each estimator is evaluated based on 

the lowest bias and standard error values. Out of all estimators, the WRM estimator is the most robust and 

resistant towards the presence of simultaneous outliers and multicollinearity.  

 

Table 3.  The frequency of each estimator with lowest bias and standard error when bootstrapping  

technique is incorporated for the case of multicollinearity is high, 0.9 and according to uniform distribution. 
Method rho = 0.9 rho =U[0.1,0.98] Frequency 

Bias Standard Error Bias Standard Error 

OLS 2  1  3 

RIDGE  1 1  2 

RMM 1  1 1 3 

WRM 1 3 1 2 7 

WRMM  1  2 3 

 

4   Conclusion 

In summary, by incorporating bootstrapping technique, it gives better parameter estimates, especially 

for data sets with simultaneous problems of outliers and multicollinearity. Simulation results prove that 

model parameter estimates are produced with lower standard error values. The integration of robust ridge 

regression with bootstrapping technique is recommended as an alternative method. For instance, analysis 

carried in the study of Bibi Asia Naz et al. [1] can be extended by using the proposed method. Apart from 

the application of this proposed method in multiple linear regression, it is recommended to be applied or 

extended to the other models such as logistic and Poisson regression model. 
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