U-Equivalence Spaces

Farshad Omidi* , Mohammad Reza Molaei
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Received: December 12013
Accepted: December 212013

Abstract

In this paper the notion of \mathcal{U}-equivalence space is introduced. It is proved that the topology induced by a \mathcal{U} equivalence space is regular. \mathcal{U}-equivalent continuous functions and \mathcal{U}-equivalent open functions are studied. Finally, the quotient \mathcal{U}-equivalence spaces are introduced and discussed. KEYWORDS: U-Equivalence; space; topology; function

INTRODUCTION

Uniform spaces are somewhere the midway points between metric spaces on one hand and abstract topological spaces on the other hand.
There are however a few aspects of metric spaces that are lost in general topological spaces. For example, since the notion of nearness is not defined for a general topological space, we cannot define the notion of uniform continuity in abstract topological spaces. The same can be said about the other notions such as total boundedness. A uniform space, which is due to A. Weil [7] is a mathematical construction in which such 'uniform' concepts are still available.
In this paper we introduce a new construction, namely, \mathcal{U}-equivalence space that is almost like a uniform space [4, 5]. We will show that the topological space induced by a \mathcal{U}-equivalence space, is a regular topological space. In the theory of \mathcal{U}-equivalence spaces, the structure-preserving functions, in the inverse image sense, are \mathcal{U}-equivalent continuous functions which are considered in section 3. Also, there is another way of forming a category where the objects are \mathcal{U}-equivalence spaces and the morphisms are structure-preserving functions in the direct image sense. We refer to these functions as the \mathcal{U}-equivalently open functions (see [4, 5]).
The notion of quotient uniform space was introduced by I.M. James [4]. We introduce and discuss a suitable notion for the quotient \mathcal{U}-equivalence space in section 4 . In particular we explore several properties of such spaces.

BASIC NOTIONS

Let us begin this section with the definition of the \mathcal{U}-equivalence class on a set.
Definition. A \mathcal{U}-equivalence class on a set X is a non-empty collection \mathcal{U}_{e} of equivalence relations on X such that \mathcal{U}_{e} is closed under finite intersections.
A simple example of a \mathcal{U}-equivalence class on a set X , is the collection of all equivalence relations on X which is called discrete \mathcal{U}-equivalence class.

Theorem. The collection $\gamma_{e}=\left\{\mathrm{U}(a) \mid a \in \mathrm{X}, \mathrm{U} \in \mathcal{U}_{e}\right\}$, where $\mathrm{U}(a)=\{x \in \mathrm{X} \mid(a, x) \in \mathrm{U}\}$ forms a base for a topology on X .
The topology generated by this base, is called \mathcal{U}-equivalence topology and denoted by τ_{e}.
Corollary. Let $\mathrm{G} \in \tau_{e}$ and $x \in \mathrm{G}$. Then there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $x \in \mathrm{U}(x) \subseteq \mathrm{G}$. Hence the collection $\{\mathrm{U}(a) \mid$ $\left.\mathrm{U} \in \mathcal{U}_{e}\right\}$ forms a local base [1,3] at a.
Proof. By theorem 2.2, there exists $\mathrm{U}(a)$ such that $x \in \mathrm{U}(a) \subseteq \mathrm{G}$.
Since $x \in \mathrm{U}(a)$ and U is an equivalence relation on X , then $\mathrm{U}(x)=\mathrm{U}(a)$. Hence $x \in \mathrm{U}(x) \subseteq \mathrm{G}$ as asserted.
Proposition. Let $\left(X, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space. Then the following statements are equivalent:

1. The topological space $\left(\mathrm{X}, \tau_{e}\right)$ is a Hausdorff topological space.
2. The intersection of all members of \mathcal{U}_{e} coincides with Δ_{x}.

Proof. Suppose (1) holds. Since Δ_{x} is contained in any member of \mathcal{U}_{e}, then
$\Delta_{\mathrm{x}} \subseteq \cap$ U as U ranges over all members of \mathcal{U}_{e}.
For the other way inclusion, assume (x, y) belongs to each U , we will show that
$\mathrm{x}=\mathrm{y}$. If this is not so, then since X is Hausdorff, there exists $\mathrm{U} \in \mathcal{U}_{e}$ and $\mathrm{V} \in \mathcal{U}_{e}$ such that $\mathrm{U}(x) \cap \mathrm{V}(y)=\Phi$. If $\mathrm{W}=$ $\mathrm{U} \cap \mathrm{V}$, then $\mathrm{W} \in \mathcal{U}_{e}$ and $\mathrm{W}(x) \cap \mathrm{W}(y)=\Phi$, whence $(x, y) \notin \mathrm{W}$ that is a contradiction with assumption. $(2) \Rightarrow(1)$. Assume x, y are distinct members of X. Then by (2), there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $(x, y) \notin \mathrm{U}$. Hence $\mathrm{U}(x) \cap$ $\mathrm{U}(y)=\Phi$. So the topological space $\left(\mathrm{X}, \tau_{e}\right)$ is a Hausdorff topological space.
Definition. Let A, B be subsets of a \mathcal{U}-equivalence space $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ We say that A and B are \mathcal{U}-adjacent if for each $\mathrm{U} \in \mathcal{U}_{e}$ there exists $a \in \mathrm{~A}$ and $\mathrm{b} \in \mathrm{B}$ such that
$(a, \mathrm{~b}) \in \mathrm{U}$. In particular if $x_{\mathrm{o}} \in \mathrm{X}$ and $\mathrm{A} \subseteq \mathrm{X}, x_{\mathrm{o}}$ is adjacent to A if and only if for each $\mathrm{U} \in \mathcal{U}_{e}$, there exists $a \in \mathrm{~A}$ such that $\left(x_{0}, a\right) \in \mathrm{U}$.
Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space, $x_{0} \in \mathrm{X}$ and let $\mathrm{A} \subseteq \mathrm{X}$. Then x_{0} is \mathcal{U}-adjacent to A if and only if $x_{\mathrm{o}} \in \overline{\mathrm{A}}$ where $\overline{\mathrm{A}}$ is the closure of A with respect to τ_{e}.
Proof. Suppose x_{0} is adjacent to A and G is a neighbourhood of x_{0}. By corollary 2.3, there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $\mathrm{U}\left(x_{\mathrm{o}}\right) \subseteq \mathrm{G}$.
Since x_{0} is adjacent to A , then there exists $a \in \mathrm{~A}$ such that $\left(x_{0}, a\right) \in \mathrm{U}$.
Hence $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{A} \neq \Phi$. This implies $\mathrm{G} \cap \mathrm{A}_{\neq} \Phi$. So $x_{0} \in \overline{\mathrm{~A}}$.
Conversely let $x_{0} \in \overline{\mathrm{~A}}$ and let $\mathrm{U} \in \mathcal{U}_{e}$. Since $\mathrm{U}\left(x_{0}\right)$ is a neighbourhood of x_{0}, then $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{A} \neq \Phi$. Let $a \in \mathrm{U}\left(x_{0}\right) \cap \mathrm{A}$.
Then $a \in \mathrm{~A}$ and $\left(x_{0}, a\right) \in \mathrm{U}$ as required.
Theorem. Every \mathcal{U}-equivalence space is a regular topological space.
Proof. We first show that the set $\mathrm{U}(\mathrm{A})=\{x \in \mathrm{X} \mid(a, x) \in \mathrm{U}$ for some $a \in \mathrm{~A}\}$ is open and $\mathrm{A} \subseteq \mathrm{U}(\mathrm{A})$, where $\mathrm{U} \in \mathcal{U}_{e}$ and $\mathrm{A} \subseteq \mathrm{X}$.
Let $x \in \mathrm{U}(\mathrm{A})$. Then there exists $a \in \mathrm{~A}$ such that $(a, x) \in \mathrm{U}$. We claim $\mathrm{U}(x) \subseteq \mathrm{U}(\mathrm{A})$. If $z \in \mathrm{U}(x)$, then $(x, z) \in \mathrm{U}$. Since U is transitive, then $(a, z) \in \mathrm{U}$ and it follows that
$z \in \mathrm{U}(\mathrm{A})$. So $\mathrm{U}(\mathrm{A})$ is open. Obviously, $\mathrm{A} \subseteq \mathrm{U}(\mathrm{A})$.
Now suppose $x_{0} \in X$ and A is a closed subset of X not containing x_{0}. Then there exists $G \in \tau_{e}$ such that $x_{0} \in G$ and $\mathrm{G} \cap \mathrm{A}=\Phi$. By proposition 2.3, there exists
$\mathrm{U} \in \tau_{e}$ such that $\mathrm{U}\left(x_{\mathrm{o}}\right) \subseteq$ G. Hence, $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{A}=\Phi$. We claim $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{U}(\mathrm{A})=\Phi$.
If this is not so, then $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{U}(\mathrm{A}) \neq \Phi$. If $z \in \mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{U}(\mathrm{A})$, then $\left(x_{\mathrm{o}}, z\right) \in \mathrm{U}$ and there exists $a_{1} \in \mathrm{~A}$ such that (a_{1}, z) $\in \mathrm{U}$.

Hence $\left(x_{0}, a_{1}\right) \in \mathrm{U}$ or $a_{1} \in \mathrm{U}\left(x_{\mathrm{o}}\right) \cap$ A contradicts that $\mathrm{U}\left(x_{\mathrm{o}}\right) \cap \mathrm{A}=\Phi$. This implies the result.
The following corollary follows from theoren 2.7 and proposition 2.4.
Corollary. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space so that $\cap\left\{\mathrm{U}: \mathrm{U} \in \mathcal{U}_{e}\right\}_{=} \Delta_{\mathrm{x}} \cdot$ Then $\left(\mathrm{X}, \tau_{e}\right)$ is a T_{3}-space [1].
Theorem. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space. Then the topological space
(X, τ_{e}) is connected if and only if it admits the trivial \mathcal{U}-equivalence class $\left\{\mathrm{X}^{2}\right\}$.
Proof. First suppose X admits the trivial equivalence class, i.e. $\mathcal{U}_{e}=\left\{\mathrm{X}^{2}\right\}$. We show that X is connected. To see this, Let G be open and closed in X (with respect to τ_{e}) and let $G \neq \Phi$. We have to show that $G=X$. Let $x \in G$. By proposition 2.3, there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $\mathrm{U}(x) \subseteq G$. Since \mathcal{U}_{e} is trivial, then $\mathrm{U}(x)=\mathrm{X}$. So $\mathrm{G}=\mathrm{X}$.
So the empty set and the whole set are the only sets in X which are both open and closed and hence X is connected.
Conversely, assume (X, τ_{e}) is connected and $\mathrm{U} \in \mathcal{U}_{e}$. We have to show that $\mathrm{U}=\mathrm{X}^{2}$. Let $x_{0} \in \mathrm{X}$. From the definition of τ_{e}, we see immediately that $\mathrm{U}\left(x_{\mathrm{o}}\right)$ is open. Also we show that $\mathrm{U}\left(x_{\mathrm{o}}\right)$ is closed. To do this, it is sufficient to show that $\overline{\mathrm{U}}\left(x_{\mathrm{o}}\right) \subseteq \mathrm{U}\left(x_{\mathrm{o}}\right)$, where $\overline{\mathrm{U}}\left(x_{\mathrm{o}}\right)$ is the closure of $\mathrm{U}\left(x_{\mathrm{o}}\right)$ with respect to τ_{e} [1].
If $z \in \overline{\mathrm{U}}\left(x_{0}\right)$, then $\mathrm{U}(z) \cap \mathrm{U}\left(x_{\mathrm{o}}\right) \neq \Phi$. Consequently, $\left(x_{\mathrm{o}}, z\right) \in \mathrm{U}$ or, $z \in \mathrm{U}\left(x_{\mathrm{o}}\right)$. So $\mathrm{U}\left(x_{o}\right)$ is also closed. $\mathrm{So} \mathrm{U}\left(x_{\mathrm{o}}\right)=\Phi$ or $\mathrm{U}\left(x_{0}\right)=$ X. Since $x_{0} \in \mathrm{U}\left(x_{0}\right)$, then $\mathrm{U}\left(x_{0}\right)=X$. So $\mathrm{U}(x)=X$ for all $x \in X$. Consequently, $\mathrm{U}=\mathrm{X}^{2}$. Hence $\mathcal{U}_{e}=\left\{\mathrm{X}^{2}\right\}$.

Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space and let $\mathrm{A} \subseteq \mathrm{X}$. Then:
a) $\overline{\mathrm{A}}=\cap\left\{\mathrm{U}: \mathrm{U} \in \mathcal{U}_{e}\right\}$, where $\overline{\mathrm{A}}$ is the closure of A with respect to τ_{e}.
b) $U(A)$ is closed and open in X.

Proof. a) Let $x \in \overline{\mathrm{~A}}$ and let $\mathrm{U} \in \mathcal{U}_{e}$. Then $\mathrm{A} \cap \mathrm{U}(x) \neq \Phi$.
If $a \in \mathrm{~A} \cap \mathrm{U}(x)$, then $(a, x) \in \mathrm{U}$ and henee, $x \in \mathrm{U}(a)$. So $\overline{\mathrm{A}} \subseteq \cap\left\{\mathrm{U}: \mathrm{U} \in \mathcal{U}_{e}\right\}$.
For the other way inclusion, Let $x \in \cap\left\{\mathrm{U}: \mathrm{U} \in \mathcal{U}_{e}\right\}$ and let G be a neighbourhood of x_{0}. By corollary 2.3, there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $\mathrm{U}(x) \subseteq \mathrm{G}$.
Since $x \in \mathrm{U}(\mathrm{A})$, then there exists $a \in \mathrm{~A}$ such that $(a, x) \in \mathrm{U}$. Thus $\mathrm{G} \cap \mathrm{A} \neq \Phi$. Hence $x \in \overline{\mathrm{~A}}$. This shows that $\cap\{\mathrm{U}$: $\left.\mathrm{U} \in \mathcal{U}_{e}\right\} \subseteq \overline{\mathrm{A}}$.
b) Evidently, $\mathrm{U}(\mathrm{A})$ is open.

On the other hand, by using $(a), \bar{U}(A)=\cap V(U(A) \subseteq U(V(A)) \subseteq U(A)$. The last statement is true, because U is an equivalence relation on X. So, $U(A)$ is closed.
The following corollary is easily obtained from part (a) of proposition 2.10.
Corollary. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space. A subset A of X is dense in X (w.r.t τ_{e}) If and only if $\mathrm{U}(\mathrm{A})=\mathrm{X}$ for every $U \in \mathcal{U}_{e}$.

CONTINUITY

In the theory of \mathcal{U}-equivalence spaces the structure-preserving functions, in the inverse-image sense, are the \mathcal{U} equivalently continuous functions, defined as follows.
Definition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(Y, \vartheta_{e}\right)$ be \mathcal{U}-equivalence spaces, and let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. f is said to be \mathcal{U} equivalently continuous if $f_{2}^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$ for each $\mathrm{V} \in \vartheta_{e}$, where $f_{2}^{-1}(\mathrm{~V})=\left\{(x, y) \in \mathrm{X}^{2} \mid(f(x), f(y)) \in \mathrm{V}\right\}$.

Clearly the identity function on any \mathcal{U}-equivalence space $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is \mathcal{U}-equivalently continuous.
Definition. A \mathcal{U}-equivalence class \mathcal{U}_{e} is said to be saturated if $\mathrm{U} \in \mathcal{U}_{e}$ and $\mathrm{U} \subseteq \mathrm{V}$, where V is an equivalence relation on X , then $\mathrm{V} \in \mathcal{U}_{e}$. Also, \mathcal{U}_{e} is said to be rich if $\mathrm{X}^{2} \in \mathcal{U}_{e}$.
Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ and $\left(\mathrm{Y}, \vartheta_{\mathrm{e}}\right)$ be two \mathcal{U}-spaces and let \mathcal{U}_{e} be saturated.
Then a function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is \mathcal{U}-equivalently continuous, if for each $\mathrm{V} \in \vartheta_{e}$ there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $f_{2}(\mathrm{U}) \subseteq \mathrm{V}$.
Proof. The 'only if' part of the proposition is a simple consequence of definition 3.1. To prove the 'if' part, let $\mathrm{V} \in \mathcal{\vartheta}_{e}$. We will show that $f_{2}^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$. If $\mathrm{U} \in \mathcal{U}_{e}$ and $f_{2}(\mathrm{U}) \subseteq \mathrm{V}$, then $\mathrm{U} \subseteq f_{2}^{-1}(\mathrm{~V})$. Since V is an equivalence relation on Y , then $f_{2}^{-1}(\mathrm{~V})$ is an equivalence relation on X . Now since \mathcal{U}_{e} is saturated, $f_{2}^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$ as asserted.
Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(\mathrm{Y}, \vartheta_{\mathrm{e}}\right)$ be \mathcal{U}-equivalence spaces and let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be \mathcal{U}-equivalently continuous function. Then f is continuous when regarded as a function from topological space X in to topological space Y .
Definition. The \mathcal{U}-equivalence space $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is said to be \mathcal{U}-connected if for each $\mathrm{U} \in \mathcal{U}_{e}, \mathrm{X}^{2}=\bigcup_{n=1}^{\infty} \mathrm{U}^{\mathrm{n}}$ where $\mathrm{U}^{\mathrm{n}}=$ U o U o...o U (n-times).
For example, the discrete \mathcal{U}-equivalence space X is never \mathcal{U}-connceted provided that the underlying set has at least two points. On the other hand, the trivial \mathcal{U}-equivalence space is always \mathcal{U}-connected.
Defintion. The \mathcal{U}-equivalence space $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is totally bounded if for each $\mathrm{U} \in \mathcal{U}_{e}$, there exist $x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \in \mathrm{X}$ such that $\mathrm{X}=\bigcup_{i=1}^{n} \mathrm{U}\left(x_{\mathrm{i}}\right)$. For example, the trivial \mathcal{U}-equivalence space is always totally bounded.

Definition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(\mathrm{Y}, \vartheta_{\mathrm{e}}\right)$ be \mathcal{U}-equivalently spaces and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. f is said to be \mathcal{U} equivalently open if for each $\mathrm{U} \in \mathcal{U}_{e}$, there exists $\mathrm{V} \in \vartheta_{e}$ such that $\mathrm{V}(f(\mathrm{x})) \subseteq f(\mathrm{U}(x))$ for all $x \in \mathrm{X}$.
Proposition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a \mathcal{U}-equivalently continuous surjection, where $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ and $\left(\mathrm{Y}, \vartheta_{\mathrm{e}}\right)$ are \mathcal{U} equivalence spaces. Moreover let X be totally bounded. Then so is Y .

Proof. Let $\mathrm{V} \in \vartheta_{e}$. We claim that there exist $y_{1}, y_{2}, \ldots, y_{\mathrm{n}} \in \mathrm{Y}$ so that $\mathrm{Y}=\bigcup_{i=1}^{n} \mathrm{~V}\left(y_{\mathrm{i}}\right)$.
Suppose $\mathrm{U}=f_{2}{ }^{-1}(\mathrm{~V})$, then $\mathrm{U} \in \mathcal{U}_{e}$, because f is \mathcal{U}-equivalently continuous.
Since X is totally bounded, then there exist $x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \in \mathrm{X}$ such that $\mathrm{X}=\bigcup_{i=1}^{n} \mathrm{U}\left(x_{\mathrm{i}}\right)$.
If $y_{\mathrm{i}}=f\left(x_{\mathrm{i}}\right)$, then we will show that $\mathrm{Y}=\bigcup_{i=1}^{n} \mathrm{~V}\left(y_{\mathrm{i}}\right)$. Let $y \in \mathrm{Y}$. Since f is surjective, then $y_{=} f(x)$ for some $x \in \mathrm{X}$.
For $\mathrm{i}=1,2, . ., \mathrm{n}$, let $\left(x_{\mathrm{i}}, x\right) \in \mathrm{U}=f_{2}^{-1}(\mathrm{~V})$, then $\left(f\left(x_{\mathrm{i}}\right), f(x)\right) \in \mathrm{V}$. Hence $\mathrm{Y}=\bigcup_{i=1}^{n} \mathrm{~V}\left(y_{\mathrm{i}}\right)$. as asserted.
Proposition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a \mathcal{U}-equivalently continuous surjection, where $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ and $\left(\mathrm{Y}, \vartheta_{\mathrm{e}}\right)$ are \mathcal{U}-spaces. If X is \mathcal{U}-connected, then so is Y .
Proof. Let $\mathrm{V} \in \vartheta_{e}$. Since f is surjection, then so is f_{2}. Since f is \mathcal{U}-equivalently continuous, then $\mathrm{U}=f_{2}^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$. So, $\mathrm{Y}^{2}=f_{2}\left(\mathrm{X}^{2}\right)=f_{2}\left(\bigcup_{n=1}^{\infty} \mathrm{U}^{\mathrm{n}}\right)=\bigcup_{n=1}^{\infty} f_{2}\left(\mathrm{U}^{\mathrm{n}}\right)=\bigcup_{n=1}^{\infty} \mathrm{V}^{\mathrm{n}}$
Hence, Y is \mathcal{U}-connected and the proof is now complete.
Poroposition 3.10. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(Y, \vartheta_{e}\right)$ and $\left(\mathrm{Z}, w_{e}\right)$ be \mathcal{U}-equivalence spaces and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a \mathcal{U} equivalently continuous surjection and let $g: Y \rightarrow \mathrm{Z}$ be a function.
If g of: $\mathrm{X} \rightarrow \mathrm{Z}$ is \mathcal{U}-equivalently, open then so is g.
Proof. let $\mathrm{V} \in \vartheta_{e}$ and $\mathrm{U}=f_{2}^{-1}(\mathrm{~V})$. Since f is \mathcal{U}-equivalently continuous, then $\mathrm{U} \in \mathcal{U}_{e}$. Moreover, since f is \mathcal{U} equivalently open, then there exists $\mathrm{W} \in w_{e}$ such that
$\mathrm{W}((g \circ f)(x)) \subseteq(g o f)(\mathrm{U}(x))$ for all $x \in \mathrm{X}$. We clain that $\mathrm{W}(\mathrm{g}(y)) \subseteq \mathrm{g}(\mathrm{V}(y))$ for all $y \in \mathrm{Y}$. To see this, let $y \in \mathrm{Y}$ and $z \in \mathrm{~W}(\mathrm{~g}(y))$. Since f is surjection, then $y_{=f} f(x)$ for some $x \in \mathrm{X}$. So $\mathrm{W}(\mathrm{g}(y)) \subseteq(g o f)(\mathrm{U}(x)) \quad$ (I).
Hence by (I), there exists $x_{1} \in \mathrm{X}$ such that $\left(x, x_{1}\right) \in \mathrm{U}, z=g\left(f\left(x_{1}\right)\right)$. Let $\mathrm{t}=f\left(x_{l}\right)$. Then $z=g(t),(y, t) \in \mathrm{V}$ i.e. $z \in g(\mathrm{~V}(y))$ as required.

Let us present another classification of saturated \mathcal{U}-connected spaces as follows.
Theorem. In a saturated \mathcal{U}-equivalence space $\left(X, U_{e}\right)$ the following statements are equivalent:

1) X is \mathcal{U}-connected
2) for each discrete space D , every \mathcal{U}-equivalently continuous function $\lambda: \mathrm{X} \rightarrow \mathrm{D}$ is constant.

Proof. (1) \rightarrow (2). Given a \mathcal{U}-equivalently continuous function $\lambda: X \rightarrow \mathrm{D}$
Where D is discrete i.e. $U_{D}=\left\{V \subseteq D^{2} \mid V\right.$ is an equivalence relation on $\left.D\right\}$.
Consider the pre-image $\mathrm{U}=\lambda_{2}{ }^{-1}\left(\Delta_{\mathrm{D}}\right)$ of the diagonal Δ_{D} of D . Then $\mathrm{U} \in \mathcal{U}_{e}$, and $\mathrm{U}^{\mathrm{n}}=\mathrm{U}$ for all n , because $\Delta_{D}^{n}=$ Δ_{D}. Since X is \mathcal{U}-connected then $X^{2}=\bigcup_{n=1}^{\infty} U^{n}=U$.

On the other hand, $\mathrm{U}=\left\{\left(x_{1}, x_{2}\right) \in \mathrm{X}^{2} \mid \lambda\left(x_{1}\right)=\lambda\left(x_{2}\right)\right\}$. Hence λ is constant.
(2) \rightarrow (1). Suppose that X is not \mathcal{U}-connected.

Then there exists $\mathrm{U} \in \mathcal{U}_{e}$ and $x_{\mathrm{o}}, y_{\mathrm{o}} \in \mathrm{X}$ such that $\left(x_{\mathrm{o}}, y_{\mathrm{o}}\right) \notin \mathrm{U}^{\mathrm{n}}$ for all n . Taking $\mathrm{D}=\{0,1\}$ equipted with discrete \mathcal{U}-equivalence class.
Define $\lambda: X \rightarrow D$ by $\lambda(x)=0$ when $\left(x_{0}, x\right) \in \mathrm{D}^{\mathrm{i}}$ for some i and $\lambda(\mathrm{x})=1$ otherwise. Hence $\lambda\left(x_{0}\right)=0$ and $\lambda\left(y_{0}\right)=1$ i.e. λ is not constant. We claim that λ is \mathcal{U}-equivalently continuous.
We first show that $\mathrm{U} \subseteq \lambda_{2}^{-1}\left(\Delta_{\mathrm{D}}\right)$. If this is not so, then there exists $\left(x_{1}, x_{2}\right) \in \mathrm{U}$,
$\lambda\left(x_{1}\right) \neq \lambda\left(x_{2}\right)$. Assume that $\lambda\left(x_{1}\right)=1, \lambda\left(x_{2}\right)=0$. Hence there exists $\mathrm{i} \in \mathrm{N},\left(x_{\mathrm{o}}, x_{2}\right) \in \mathrm{U}^{\mathrm{i}}$. Consequently, $\left(x_{\mathrm{o}}, x_{1}\right) \in \mathrm{U}^{\mathrm{i}+1}$ contradicting that $\lambda\left(x_{1}\right)=1$. Hence $\mathrm{U} \subseteq \lambda_{2}^{-1}\left(\Delta_{\mathrm{D}}\right)$. So for each $\mathrm{V} \in \mathcal{U}_{D}, \lambda_{2}^{-1}(\mathrm{~V}) \supseteq \lambda_{2}{ }^{-1}\left(\Delta_{\mathrm{D}}\right) \supseteq \mathrm{U}$. Whence $\lambda_{2}{ }^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$ because \mathcal{U}_{e} is saturated.

Hence λ is \mathcal{U}-equivalently continuous function while it is not constant, that is a contradiction. This proves that X is \mathcal{U}-connected.
We omit the straightforward proof of the following proposition.
Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(\mathrm{Y}, \vartheta_{e}\right)$ be \mathcal{U}-equivalence spaces where ϑ_{e} is saturated.Then a bijection $f: \mathrm{X} \rightarrow \mathrm{Y}$ is \mathcal{U}-equivalently open if and only if its inverse is \mathcal{U}-equivalently continuous.

Proposition. Let $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(\mathrm{Y}, \vartheta_{e}\right)$ and $\left(\mathrm{Z}, w_{e}\right)$ be \mathcal{U}-equivalence spaces and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function and let g : $\mathrm{Y} \rightarrow \mathrm{Z}$ be \mathcal{U}-equivalently continuous injection. If g o f is \mathcal{U}-equivalently open, then so is f.
Poof. Let $\mathrm{U} \in \mathcal{U}_{e}$. Then there exists $\mathrm{W} \in \mathcal{w}_{e}, \mathrm{~W}\left(h(x) \subseteq h(\mathrm{U}(x))\right.$ for all $x \in \mathrm{X}$ where $h=g$ o f. Since g is \mathcal{U}_{-} equivalently continuous, then the pre-image $\mathrm{V}=g_{2}{ }^{-1}(\mathrm{~W})$ is a member of ϑ_{e}. Now it is easy to see $\mathrm{V}(f(x)) \subseteq f(\mathrm{U}(x))$ for all $x \in \mathrm{X}$. it follows that f is \mathcal{U}-equivalently open as asserted.
Proposition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a \mathcal{U}-equivalently open function, where X is non-empty, $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is rich and $\left(\mathrm{Y}, \vartheta_{e}\right)$ is \mathcal{U}-connected. Then f is surjection.
Proof. Let $\mathrm{U}=\mathrm{X}^{2}$, Then there exists $\mathrm{V} \in \vartheta_{e}$ such that $\mathrm{V}(f(x)) \subseteq f(\mathrm{U}(x))$ for all $x \in \mathrm{X}$. consequently, $\mathrm{V}(f(x)) \subseteq f(\mathrm{X})$ for all $\mathrm{x} \in \mathrm{X}$. Hence for each n and each $\mathrm{x} \in \mathrm{X}$,
$\mathrm{V}^{\mathrm{n}}(f(x)) \subseteq f(\mathrm{X})$. Let $x_{\mathrm{o}} \in \mathrm{X}$ and let $y_{\mathrm{o}}=f\left(x_{\mathrm{o}}\right)$. We claim $\mathrm{Y}=f(\mathrm{X})$.
To see this, let $y \in \mathrm{Y}$, then $\left(y_{0}, y\right) \in \mathrm{Y}^{2}=\bigcup_{n=1}^{\infty} \mathrm{V}^{\mathrm{n}}$. Hence, $y \in \mathrm{~V}^{\mathrm{n}}\left(f\left(x_{0}\right)\right)$ for some n . Since $\mathrm{V}^{\mathrm{n}}\left(f\left(x_{0}\right)\right) \subseteq f(\mathrm{X})$, then $\mathrm{y} \in$ $f(\mathrm{X})$. This proves $\mathrm{Y}=f(\mathrm{X})$.
Definition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a map where $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is a \mathcal{U}-equivalence space and Y is a set. We say that f is transverse to X if there exists $\mathrm{U} \in \mathcal{U}_{e}$ such that
$\mathrm{U} \cap f_{2}^{-1}\left(\Delta_{\mathrm{Y}}\right)=\Delta_{\mathrm{X}}$. By a local \mathcal{U}-equivalence we mean, a \mathcal{U}-equivalently continuous and \mathcal{U}-equivalently open function $f: \mathrm{X} \rightarrow \mathrm{Y}$, where $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ and $\left(\mathrm{Y}, \vartheta_{e}\right)$ are \mathcal{U}-equivalence spaces such that f is transverse to X .
Proposition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a \mathcal{U}-equivalently continuous function. Suppose f admits a left inverse g which is local \mathcal{U}-equivalence. Then f is \mathcal{U}-equivalently open.

Proof. Let $\mathrm{U} \in \mathcal{U}_{e}$. Then $\mathrm{V}_{1=} g_{2}{ }^{-1}(\mathrm{U}) \in \vartheta_{e}$ because g is \mathcal{U}-equivalently continuous. Since g is transverse to Y , then there exists $\mathrm{V}_{\mathrm{o}} \in \vartheta_{e}$ such that $\mathrm{V}_{\mathrm{o}} \cap g_{2}{ }^{-1}\left(\Delta_{\mathrm{X}}\right)=\Delta_{\mathrm{Y}}$. Let $\mathrm{V}_{2}=(f o g)_{2}{ }^{-1}\left(\mathrm{~V}_{0}\right)$. Then since $f o g$ is \mathcal{U}-equivalently continuous, $\mathrm{V}_{2} \in \vartheta_{e}$. Finally let $\mathrm{V}=\mathrm{V}_{0} \cap \mathrm{~V}_{1} \cap \mathrm{~V}_{2}$. We claim $\mathrm{V}(f(x)) \subseteq f(\mathrm{U}(x))$ for all $\mathrm{x} \in \mathrm{X}$. suppose $y \in \mathrm{~V}(f(x))$. Then $(x, g(y)) \in \mathrm{U}$. Finally, we have to show that $f(g(y))=y$.
Since $(g(\mathrm{y}), g(\mathrm{y})) \in \Delta_{\mathrm{X}}$, then $\left(f(g(y), y) \in g_{2}{ }^{-1}\left(\Delta_{\mathrm{X}}\right)\right.$.
Also, $(y, f(x)) \in \mathrm{V}_{0}$ and $\left(f(x),\left(f(g(y)) \in \mathrm{V}_{0}\right.\right.$. Hence, $(f(g(\mathrm{y})), \mathrm{y}) \in \mathrm{V}_{0}$. consequently, $(f(g(y)), y) \in \Delta_{\mathrm{Y}}$ that means, $f(g(y))=y$.

Proposition. Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ and $g: \mathrm{Y} \rightarrow \mathrm{Z}$ be \mathcal{U}-equivalently continuous functions, where $\left(\mathrm{X}, \mathcal{U}_{e}\right),\left(\mathrm{Y}, \vartheta_{e}\right)$ and $\left(\mathrm{Z}, \mathcal{w}_{e}\right)$ are \mathcal{U}-equivalence spaces $g o f$ is \mathcal{U}-equivalently open, f is injective and g is transverse to Y . The $g o f$ is a local \mathcal{U}-equivalence.

Proof. Since g is transverse to Y , there exists $\mathrm{V} \in \vartheta_{e}$ such that $\mathrm{V} \cap g_{2}{ }^{-1}\left(\Delta_{\mathrm{Z}}\right)=\Delta_{\mathrm{Y}}$. Let $\mathrm{U}=f_{2}{ }^{-1}(\mathrm{~V})$. Then $\mathrm{U} \in \mathcal{U}_{e}$. Now we have to show that $U \cap\left((g \circ f)_{2}^{-1}\left(\Delta_{\mathrm{z}}\right)=\Delta_{\mathrm{x}}\right.$.
Clearly, $\Delta_{\mathrm{x}} \subseteq \mathrm{U} \cap\left((g o f)_{2}^{-1}\left(\Delta_{\mathrm{Z}}\right)\right.$. For the other way inclusion, let $\left(x_{1}, x_{2}\right) \in \mathrm{U}$ and $g\left(f\left(x_{1}\right)=g\left(f\left(x_{2}\right)\right.\right.$. Then $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in$ $\mathrm{V} \cap g_{2}{ }^{-1}\left(\Delta_{\mathrm{Z}}\right)=\Delta_{\mathrm{Y}}$. So $f\left(x_{1}\right)=f\left(x_{2}\right)$ and since f is injective, $x_{1}=x_{2}$. Hence $\mathrm{U} \cap(g \circ f)_{2}^{-1}\left(\Delta_{\mathrm{Z}}\right)=\Delta_{\mathrm{X}}$.

QUOTIENT \boldsymbol{U}-EQUIVALENCE SPACES

Let $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ be a \mathcal{U}-equivalence space and let \mathcal{R} be an equivalence relation on X .

Also, let $\pi: \mathrm{X} \rightarrow \mathrm{X} / \mathcal{R}$ is the function defined by $\pi(x)=\mathcal{R}[x]$, where $\mathcal{R}[x]=\{y \in \mathrm{X} \mid(x, y) \in \mathcal{R}\}$. The function π is called the natural projection.

Now we ask whether X / \mathcal{R} can inherits a \mathcal{U}-equivalence class from X such that makes the natural projcetion $\pi \mathcal{U}$ equivalently continuous, and if the answer is yes, then we discuss the relationships between these two spaces.
Definition. An equivalence relation \mathcal{R} on a \mathcal{U}-equivalence space ($\mathrm{X}, \mathcal{U}_{e}$) is compatible with \mathcal{U}_{e} if for each $\mathrm{U} \in \mathcal{U}_{e}, \mathcal{R}$ o $\mathrm{U}=\mathrm{U}$
For example, let X be a non-empty set and $\mathcal{R}=\Delta_{\mathrm{X}}$ Then \mathcal{R} is compatible with $\left\{\mathrm{X}^{2}\right\}$.
The following lemma is often useful.
Lemma. Let \mathcal{R} be an equivalence relation on a \mathcal{U}-equivalence space ($\mathrm{X}, \mathcal{U}_{e}$). Then the following statements are equivalent:
i) \mathcal{R} is compatible with \mathcal{U}_{e}.
ii) For each $\mathrm{U} \in \mathcal{U}_{e}$, Uo R $=\mathrm{U}$.
iii) For each $\mathrm{U} \in \mathcal{U}_{e}, \mathcal{R}$ о U о $\mathcal{R}=\mathrm{U}$.
iv) For each $\mathrm{U} \in \mathcal{U}_{e}$, U o \mathcal{R} o $\mathrm{U}=\mathrm{U}$.

Proof. The equivalence of (i) with (ii) is trivial.
Assume (ii) holds and suppose $\mathrm{U} \in \mathcal{U}_{e}$, Then $\mathrm{Uo} \mathcal{R}=\mathrm{U}$ and hence \mathcal{R} o U o $\mathcal{R}=\mathcal{R}$ o U . Since $\mathrm{Uo} \mathcal{R}=\mathrm{U}$, then the equivalence of (i) with (ii) implies \mathcal{R} o $\mathrm{U}=\mathrm{U}$. Hence \mathcal{R} o $\mathrm{Uo} \mathcal{R}=\mathrm{U}$.The other parts result by straightforward calculations.
Theorem. Let \mathcal{R} be a compatible equivalence relation on a \mathcal{U}-equivalence space ($\mathrm{X}, \mathcal{U}_{e}$). Then the images of the members of \mathcal{U}_{e} under π_{2}, form a \mathcal{U}-equivalence class on X / \mathcal{R}. We refe to this class as the quotient \mathcal{U}-epuivalence class and to X / \mathcal{R} with this structure, as the quotient \mathcal{U}-equivalence space.
We recall that X / \mathcal{R} is the collection of all equivalence classes $\mathcal{R}[\mathrm{X}]$, and $\pi_{2}(x, y)=$
$(\pi(x), \pi(y))=(\mathcal{R}[x], \mathcal{R}[y])$
Proof. Let $\mathcal{U}_{e}{ }^{\pi}$ denotes this collection i.e. $\mathcal{U}_{e}{ }^{\pi}=\left\{\pi_{2}(\mathrm{U}) \mid \mathrm{U} \in \mathcal{U}_{e}\right\}$.
We first show each member of \mathcal{U}_{e} is an equivalence relation on X / \mathcal{R}. Let $\quad \mathrm{V}=\pi_{2}(\mathrm{U})$ where $\mathrm{U} \in \mathcal{U}_{e}$ and let $\mathrm{x} \in \mathrm{X}$.
Then $(\mathcal{R}[x], \mathcal{R}[x])=\pi_{2}(x, x)$ and $(x, x) \in \Delta_{\mathrm{X}} \subseteq \mathrm{U}$. Hence $\Delta_{\mathrm{X}} / \mathcal{R} \subseteq \mathrm{V}$ and so V is reflexive. Clearly V is symmetric. Now we show that V is transitive.

Let $(\mathcal{R}[x], \mathcal{R}[y]) \in \mathrm{V}$ and let $(\mathcal{R}[y], \mathcal{R}[z]) \in \mathrm{V}$. Then $\left.(\mathcal{R}[x], \mathcal{R}[y])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[t_{2}\right]\right)\right),\left(t_{1}, t_{2}\right) \in \mathrm{U}$. Also $(\mathcal{R}[y], \mathcal{R}[z])=$ $\left(\mathcal{R}\left(u_{1}\right), \mathcal{R}\left(u_{2}\right]\right),\left(u_{1}, u_{2}\right) \in \mathrm{U}$.
Hence $(\mathcal{R}[x], \mathcal{R}[z])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[u_{2}\right]\right)$. Since $\left(t_{1}, t_{2}\right) \in \mathrm{U},\left(t_{2}, u_{1}\right) \in \mathcal{R}$ and $\left(u_{1}, u_{2}\right) \in \mathrm{U}$, then $\left(t_{1}, u_{2}\right) \in \mathrm{U}$ o \mathcal{R} o U. Now compatibility of \mathcal{R} with \mathcal{U}_{e}, implies $\left(t_{1}, u_{2}\right) \in \mathrm{U}$. Hence $(\mathcal{R}[x], \mathcal{R}[z])=\pi_{2}\left(t_{1}, u_{2}\right),\left(t_{1}, u_{2}\right) \in \mathrm{U}$.
So $(\mathcal{R}[x], \mathcal{R}[z]) \in \pi_{2}(\mathrm{U})=\mathrm{V}$. Whence V is transitive.
Finally, We show that the intersection of two members of \mathcal{U}_{e}^{π} is a member of U_{e}. Let $\mathrm{V}_{1}=\pi_{2}\left(\mathrm{U}_{1}\right)$ and $\mathrm{V}_{2}=$ $\pi_{2}\left(\mathrm{U}_{2}\right)$, where $\mathrm{U}_{1}, \mathrm{U}_{2} \in \mathcal{U}_{e}$, be two members of $\mathcal{U}_{e}{ }^{\pi}$.
We contend that $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\pi_{2}\left(\mathrm{U}_{1} \cap \mathrm{U}_{2}\right)$ which shows that $\mathrm{V}_{1} \cap \mathrm{~V}_{2} \in \mathcal{U}_{e}^{\pi}$
Clearly $\pi_{2}\left(\mathrm{U}_{1} \cap \mathrm{U}_{2}\right) \subseteq \pi_{2}\left(\mathrm{U}_{1}\right) \cap \pi_{2}\left(\mathrm{U}_{2}\right)$. Now let $(\mathcal{R}[x], \mathcal{R}[y]) \in \pi_{2}\left(\mathrm{U}_{1}\right) \cap \pi_{2}\left(\mathrm{U}_{2}\right)$.
Then $(\mathcal{R}[x], \mathcal{R}[y])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[t_{2}\right]\right),\left(t_{1}, t_{2}\right) \in \mathrm{U}_{1}$

$$
=\left(\mathcal{R}\left[u_{1}\right], \mathcal{R}\left[u_{2}\right]\right),\left(u_{1}, u_{2}\right) \in \mathrm{U}_{2} .
$$

Consequently, $(\mathcal{R}[x], \mathcal{R}[y])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[u_{2}\right]\right.$. But $\left(t_{1}, u_{2}\right) \in \mathcal{R} \mathrm{OU}_{2}=\mathrm{U}_{2}$ and,
$\left(t_{1}, u_{2}\right) \in \mathrm{U}_{1} \mathrm{O} \mathcal{R}=\mathrm{U}_{1}$. Hence, $(\mathcal{R}[x], \mathcal{R}[y])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[u_{2}\right]\right),\left(t_{1}, u_{2}\right) \in \mathrm{U}_{1} \cap \mathrm{U}_{2}$. $\mathrm{So}(\mathcal{R}[x], \mathcal{R}[y]) \in \pi_{2}\left(\mathrm{U}_{1} \cap \mathrm{U}_{2}\right)$. Hence, $\pi_{2}\left(\mathrm{U}_{1} \cap \mathrm{U}_{2}\right)=\pi_{2}\left(\mathrm{U}_{1}\right) \cap \pi_{2}\left(\mathrm{U}_{2}\right)$.
Theorem. Let \mathcal{R} be an equivalence relation on X , compatible with \mathcal{U}_{e} where $\left(\mathrm{X}, \mathcal{U}_{e}\right)$ is a \mathcal{U}-equivalence space. Then π is \mathcal{U}-equivalently continuous and \mathcal{U}-equivalently open.

Proof. We first show that π is \mathcal{U}-equivalently open. Let $\mathrm{U} \in \mathcal{U}_{e}$ and $\mathrm{V}=\pi_{2}(\mathrm{U})$. Then $\mathrm{V} \in \mathcal{U}_{e}{ }^{\pi}$. We claim that $\mathrm{V}(\pi$ $(x)) \subseteq \pi(\mathrm{U}(x))$ for all $x \in \mathrm{X}$.
Let $x \in \mathrm{X}$ and let $\mathcal{R}[\mathrm{t}] \in \mathrm{V}(\pi(x))=\mathrm{V}(\mathcal{R}[x])$ We will show there exists $u \in \mathrm{X}$ such that $\mathcal{R}[t]=\mathcal{R}[u]$ and $(x, u) \in \mathrm{U}$. Since $\mathrm{R}[\mathrm{t}] \in \mathrm{V}[\mathcal{R}[x]]$, then there exists $\left(t_{1}, t_{2}\right) \in \mathrm{U}$ such that $(\mathcal{R}[x], \mathcal{R}[t])=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[t_{2}\right]\right)$. Hence $\mathcal{R}[t]=\mathcal{R}\left[t_{2}\right]$ and $(x$, $\left.t_{2}\right) \in \mathcal{R} \circ \mathrm{U}=\mathrm{U}$. let $\mathrm{u}_{=} \mathrm{t}_{2}$. Then $\mathrm{R}[\mathrm{t}]=\mathrm{R}[\mathrm{u}]$ and $(x, u) \in \mathrm{U}$ as required.
Now we prove that π is \mathcal{U}-equivalently continuous. Let $\mathrm{V} \in \mathcal{U}_{e}{ }^{\pi}$. We show that
$\pi_{2}{ }^{-1}(\mathrm{~V}) \in \mathcal{U}_{e}$. There exists $\mathrm{U} \in \mathcal{U}_{e}$ such that $\mathrm{V}=\pi_{2}(\mathrm{U})$. On one hand we have $\pi_{2}{ }^{-1}(\mathrm{~V})=\pi_{2}{ }^{-1}\left(\pi_{2}(\mathrm{U})\right) \supseteq \mathrm{U}$. On the other hand, if $\left(x_{1}, x_{2}\right) \in \pi_{2}^{-1}(\mathrm{~V})$, then $\left(\mathcal{R}\left[x_{1}\right], \mathcal{R}\left[x_{2}\right]\right)=\left(\mathcal{R}\left[t_{1}\right], \mathcal{R}\left[t_{2}\right]\right),\left(t_{1}, t_{2}\right) \in \mathrm{U}$. Hence $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ o U o $\mathcal{R}=\mathrm{U}$. So $\pi_{2}{ }^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$. And hence $\pi_{2}{ }^{-1}(\mathrm{~V})=\mathrm{U} \in \mathcal{U}_{e}$.

Acknowledgment

The authors declare that they have no conflicts of interest in the research.

REFERENCES

[1] J.R. Munkres, Topology-A First Course, Prentice-Hall, New Delhi, 1978.
[2] S. Willard, General Topology, Addison-Wesley, Reading, 1970.
[3] J.L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
[4] I.M. James, Topological and Uniform Speces, Springer, New York, 1987.
[5] W. Page, Topological and Uniform Structures, Wiley, New York, 1978.
[6] R. Fuller, Uniform Continuity and Net Behavior, Annales Societatis Mathematicae Plonae, Comentationes Mathematicae XVI, 1972, 165-167.
[7] A. Weil, Sur les Espaces a Structure Uniforme et sur la Topologie Gnerale, Actualites Sci. Ind. 551, Paris, 1937.
[8] B. Hutton, Uniformities of Fuzzy Topological Spaces, J. Math. Anal. Appl. 58(1977), 559-571.
[9] D. Zhang, Stratified Hutton Uniform Spaces, Fuzzy Sets and Systems 131, (2002), 337-346.
[10] D.K. Mitra and D. Hazarika, L-locally Uniform Spaces, J. Fuzzy Math.18(2002), 505-516.
[11] Turkoglu D, Ozer O and Fisher B, Some Fixed Point Theorems for Set Valued Mapping in Uniform Spaces, Demonstratio Math. 2(1999), 395-400.
[12] M. Katetov, On Continuity Structures and Spaces of Mappings, Comm. Math. Univ. Carolinae, 6(1965), 257278.

