

© 2014, TextRoad Publication

ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com

U-Equivalence Spaces

Farshad Omidi^{*}, Mohammad Reza Molaei

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Received: December 1 2013 Accepted: December 21 2013

ABSTRACT

In this paper the notion of \mathcal{U} -equivalence space is introduced. It is proved that the topology induced by a \mathcal{U} -equivalence space is regular. \mathcal{U} -equivalent continuous functions and \mathcal{U} -equivalent open functions are studied. Finally, the quotient \mathcal{U} -equivalence spaces are introduced and discussed.

KEYWORDS: U-Equivalence; space; topology; function

INTRODUCTION

Uniform spaces are somewhere the midway points between metric spaces on one hand and abstract topological spaces on the other hand.

There are however a few aspects of metric spaces that are lost in general topological spaces. For example, since the notion of nearness is not defined for a general topological space, we cannot define the notion of uniform continuity in abstract topological spaces. The same can be said about the other notions such as total boundedness. A uniform space, which is due to A. Weil [7] is a mathematical construction in which such 'uniform' concepts are still available.

In this paper we introduce a new construction, namely, \mathcal{U} -equivalence space that is almost like a uniform space [4, 5]. We will show that the topological space induced by a \mathcal{U} -equivalence space, is a regular topological space. In the theory of \mathcal{U} -equivalence spaces, the structure-preserving functions, in the inverse image sense, are \mathcal{U} -equivalent continuous functions which are considered in section 3. Also, there is another way of forming a category where the objects are \mathcal{U} -equivalence spaces and the morphisms are structure-preserving functions in the direct image sense. We refer to these functions as the \mathcal{U} -equivalently open functions (see [4, 5]).

The notion of quotient uniform space was introduced by I.M. James [4]. We introduce and discuss a suitable notion for the quotient \mathcal{U} -equivalence space in section 4. In particular we explore several properties of such spaces.

BASIC NOTIONS

Let us begin this section with the definition of the U-equivalence class on a set.

Definition. A \mathcal{U} -equivalence class on a set X is a non-empty collection \mathcal{U}_e of equivalence relations on X such that \mathcal{U}_e is closed under finite intersections.

A simple example of a U-equivalence class on a set X, is the collection of all equivalence relations on X which is called discrete U-equivalence class.

Theorem. The collection $\gamma_e = \{ U(a) \mid a \in X, U \in \mathcal{U}_e \}$, where

 $U(a) = \{x \in X \mid (a, x) \in U\}$ forms a base for a topology on X.

The topology generated by this base, is called \mathcal{U} -equivalence topology and denoted by τ_e .

Corollary. Let $G \in \tau_e$ and $x \in G$. Then there exists $U \in U_e$ such that $x \in U(x) \subseteq G$. Hence the collection $\{U(a) \mid U \in U_e\}$ forms a local base [1,3] at *a*.

Proof. By theorem 2.2, there exists U(a) such that $x \in U(a) \subseteq G$.

Since $x \in U(a)$ and U is an equivalence relation on X, then U(x) = U(a). Hence $x \in U(x) \subseteq G$ as asserted.

Proposition. Let (X, \mathcal{U}_{ρ}) be a \mathcal{U} -equivalence space. Then the following statements are equivalent:

1. The topological space (X, τ_e) is a Hausdorff topological space.

2. The intersection of all members of U_e coincides with Δ_x .

Proof. Suppose (1) holds. Since Δ_x is contained in any member of \mathcal{U}_e , then

 $\Delta_x \subseteq \cap U$ as U ranges over all members of \mathcal{U}_e .

For the other way inclusion, assume (x, y) belongs to each U, we will show that

x = y. If this is not so, then since X is Hausdorff, there exists U ∈ \mathcal{U}_e and V ∈ \mathcal{U}_e such that U(x) ∩ V(y) = Φ. If W = U ∩ V, then W ∈ \mathcal{U}_e and W(x) ∩ W(y) = Φ, whence (x, y) ∉ W that is a contradiction with assumption.

(2)⇒(1). Assume *x*, *y* are distinct members of X. Then by (2), there exists $U \in U_e$ such that $(x, y) \notin U$. Hence $U(x) \cap U(y) = \Phi$. So the topological space (X, τ_e) is a Hausdorff topological space. ■

Definition. Let A, B be subsets of a \mathcal{U} -equivalence space (X, \mathcal{U}_e) We say that A and B are \mathcal{U} -adjacent if for each U $\in \mathcal{U}_e$ there exists $a \in A$ and $b \in B$ such that

 $(a, b) \in U$. In particular if $x_0 \in X$ and $A \subseteq X$, x_0 is adjacent to A if and only if for each $U \in U_e$, there exists $a \in A$ such that $(x_0, a) \in U$.

Proposition. Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space, $x_o \in X$ and let $A \subseteq X$. Then x_o is \mathcal{U} -adjacent to A if and only if $x_o \in \overline{A}$ where \overline{A} is the closure of A with respect to τ_e .

Proof. Suppose x_0 is adjacent to A and G is a neighbourhood of x_0 . By corollary 2.3, there exists $U \in U_e$ such that $U(x_0) \subseteq G$.

Since x_0 is adjacent to A, then there exists $a \in A$ such that $(x_0, a) \in U$.

Hence $U(x_0) \cap A \neq \Phi$. This implies $G \cap A_{\neq} \Phi$. So $x_0 \in \overline{A}$.

Conversely let $x_0 \in \overline{A}$ and let $U \in U_e$. Since $U(x_0)$ is a neighbourhood of x_0 , then $U(x_0) \cap A \neq \Phi$. Let $a \in U(x_0) \cap A$.

Then $a \in A$ and $(x_0, a) \in U$ as required.

Theorem. Every \mathcal{U} -equivalence space is a regular topological space.

Proof. We first show that the set $U(A) = \{x \in X \mid (a, x) \in U \text{ for some } a \in A\}$ is open and $A \subseteq U(A)$, where $U \in \mathcal{U}_{\rho}$ and $A \subseteq X$.

Let $x \in U(A)$. Then there exists $a \in A$ such that $(a, x) \in U$. We claim $U(x) \subseteq U(A)$. If $z \in U(x)$, then $(x, z) \in U$. Since U is transitive, then $(a, z) \in U$ and it follows that

 $z \in U(A)$. So U(A) is open. Obviously, $A \subseteq U(A)$.

Now suppose $x_0 \in X$ and A is a closed subset of X not containing x_0 . Then there exists $G \in \tau_e$ such that $x_0 \in G$ and

 $G \cap A = \Phi$. By proposition 2.3, there exists

U ∈ $τ_e$ such that U(x_o) ⊆ G. Hence, U(x_o) ∩ A = Φ. We claim U(x_o) ∩ U(A) = Φ.

If this is not so, then $U(x_0) \cap U(A) \neq \Phi$. If $z \in U(x_0) \cap U(A)$, then $(x_0, z) \in U$ and there exists $a_1 \in A$ such that $(a_1, z) \in U$.

Hence $(x_0, a_1) \in U$ or $a_1 \in U(x_0) \cap A$ contradicts that $U(x_0) \cap A = \Phi$. This implies the result.

The following corollary follows from theorem 2.7 and proposition 2.4.

Corollary. Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space so that $\cap \{U : U \in \mathcal{U}_e\}_{=} \Delta_x \cdot \text{Then } (X, \tau_e) \text{ is a } T_3 \text{-space } [1].$

Theorem. Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space. Then the topological space

(X, τ_e) is connected if and only if it admits the trivial \mathcal{U} -equivalence class {X²}.

Proof. First suppose X admits the trivial equivalence class, i.e. $\mathcal{U}_e = \{X^2\}$. We show that X is connected. To see this, Let G be open and closed in X (with respect to τ_e) and let $G \neq \Phi$. We have to show that G = X. Let $x \in G$. By proposition 2.3, there exists $U \in \mathcal{U}_e$ such that $U(x) \subseteq G$. Since \mathcal{U}_e is trivial, then U(x) = X. So G = X.

So the empty set and the whole set are the only sets in X which are both open and closed and hence X is connected.

Conversely, assume (X, τ_e) is connected and $U \in \mathcal{U}_e$. We have to show that $U = X^2$. Let $x_o \in X$. From the definition of τ_e , we see immediately that $U(x_o)$ is open. Also we show that $U(x_o)$ is closed. To do this, it is sufficient to show that $\overline{U}(x_o) \subseteq U(x_o)$, where $\overline{U}(x_o)$ is the closure of $U(x_o)$ with respect to τ_e [1].

If $z \in \overline{U}(x_0)$, then $U(z) \cap U(x_0) \neq \Phi$. Consequently, $(x_0, z) \in U$ or, $z \in U(x_0)$. So $U(x_0)$ is also closed. So $U(x_0) = \Phi$ or $U(x_0) = X$. Since $x_0 \in U(x_0)$, then $U(x_0) = X$. So U(x) = X for all $x \in X$. Consequently, $U = X^2$. Hence $\mathcal{U}_e = \{X^2\}$.

Proposition. Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space and let $A \subseteq X$. Then:

a) $\bar{A} = \bigcap \{ U : U \in \mathcal{U}_e \}$, where \bar{A} is the closure of A with respect to τ_e . b) U(A) is closed and open in X.

Proof. a) Let $x \in \overline{A}$ and let $U \in U_e$. Then $A \cap U(x) \neq \Phi$.

If $a \in A \cap U(x)$, then $(a, x) \in U$ and hence, $x \in U(a)$. So $\overline{A} \subseteq \cap \{U : U \in \mathcal{U}_{\rho}\}$.

For the other way inclusion, Let $x \in \cap \{U : U \in \mathcal{U}_e\}$ and let G be a neighbourhood of x_0 . By corollary 2.3, there exists $U \in \mathcal{U}_e$ such that $U(x) \subseteq G$.

Since $x \in U(A)$, then there exists $a \in A$ such that $(a, x) \in U$. Thus $G \cap A \neq \Phi$. Hence $x \in \overline{A}$. This shows that $\cap \{U : A \neq \Phi\}$.

 $U \in \mathcal{U}_{e} \} \subseteq \overline{A}.$

b) Evidently, U(A) is open.

On the other hand, by using (a), $\overline{U}(A) = \cap V(U(A) \subseteq U(V(A)) \subseteq U(A)$. The last statement is true, because U is an equivalence relation on X. So, U(A) is closed.

The following corollary is easily obtained from part (a) of proposition 2.10.

Corollary. Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space. A subset A of X is dense in X (w.r.t τ_e) If and only if U(A) = X for every U $\in \mathcal{U}_e$.

CONTINUITY

In the theory of U-equivalence spaces the structure-preserving functions, in the inverse-image sense, are the U-equivalently continuous functions, defined as follows.

Definition. Let (X, \mathcal{U}_e) , (Y, ϑ_e) be \mathcal{U} -equivalence spaces, and let $f : X \rightarrow Y$ be a function. f is said to be \mathcal{U} -equivalently continuous if $f_2^{-1}(V) \in \mathcal{U}_e$ for each $V \in \vartheta_e$, where $f_2^{-1}(V) = \{(x, y) \in X^2 | (f(x), f(y)) \in V\}$.

Clearly the identity function on any \mathcal{U} -equivalence space (X, \mathcal{U}_{e}) is \mathcal{U} -equivalently continuous.

Definition. A \mathcal{U} -equivalence class \mathcal{U}_e is said to be saturated if $U \in \mathcal{U}_e$ and $U \subseteq V$, where V is an equivalence relation on X, then $V \in \mathcal{U}_e$. Also, \mathcal{U}_e is said to be rich if $X^2 \in \mathcal{U}_e$.

Proposition. Let (X, \mathcal{U}_e) and (Y, ϑ_e) be two \mathcal{U} -spaces and let \mathcal{U}_e be saturated.

Then a function $f: X \to Y$ is \mathcal{U} -equivalently continuous, if for each $V \in \vartheta_a$

there exists $U \in \mathcal{U}_{e}$ such that $f_{2}(U) \subseteq V$.

Proof. The 'only if' part of the proposition is a simple consequence of definition 3.1. To prove the 'if' part, let $V \in \vartheta_e$. We will show that $f_2^{-1}(V) \in \mathcal{U}_e$. If $U \in \mathcal{U}_e$ and $f_2(U) \subseteq V$, then $U \subseteq f_2^{-1}(V)$. Since V is an equivalence relation on Y, then $f_2^{-1}(V)$ is an equivalence relation on X. Now since \mathcal{U}_e is saturated, $f_2^{-1}(V) \in \mathcal{U}_e$ as asserted.

Proposition. Let (X, \mathcal{U}_e) , (Y, ϑ_e) be \mathcal{U} -equivalence spaces and let $f : X \to Y$ be \mathcal{U} -equivalently continuous function. Then *f* is continuous when regarded as a function from topological space X in to topological space Y.

Definition. The \mathcal{U} -equivalence space (X, \mathcal{U}_e) is said to be \mathcal{U} -connected if for each $U \in \mathcal{U}_e, X^2 = \bigcup_{n=1}^{\infty} U^n$ where $U^n = U^n$

U o U o...o U (n-times).

For example, the discrete U-equivalence space X is never U-connected provided that the underlying set has at least two points. On the other hand, the trivial U-equivalence space is always U-connected.

Definition. The \mathcal{U} -equivalence space (X, \mathcal{U}_e) is totally bounded if for each $U \in \mathcal{U}_e$, there exist $x_1, x_2, ..., x_n \in X$ such that $X = \bigcup_{i=1}^n U(x_i)$. For example, the trivial \mathcal{U} -equivalence space is always totally bounded.

Definition. Let (X, \mathcal{U}_e) , (Y, ϑ_e) be \mathcal{U} -equivalently spaces and $f : X \to Y$ be a function. f is said to be \mathcal{U} -equivalently open if for each $U \in \mathcal{U}_e$, there exists $V \in \vartheta_e$ such that $V(f(x)) \subseteq f(U(x))$ for all $x \in X$.

Proposition. Let $f: X \to Y$ be a \mathcal{U} -equivalently continuous surjection, where (X, \mathcal{U}_e) and (Y, ϑ_e) are \mathcal{U} -equivalence spaces. Moreover let X be totally bounded. Then so is Y.

Proof. Let $V \in \vartheta_e$. We claim that there exist $y_1, y_2, \dots, y_n \in Y$ so that $Y = \bigcup_{i=1}^n V(y_i)$.

Suppose $U_{=}f_{2}^{-1}(V)$, then $U \in \mathcal{U}_{e}$, because *f* is \mathcal{U} -equivalently continuous. Since X is totally bounded, then there exist $x_{1}, x_{2}, ..., x_{n} \in X$ such that $X = \bigcup_{i=1}^{n} U(x_{i})$.

If $y_i = f(x_i)$, then we will show that $\mathbf{Y} = \bigcup_{i=1}^{n} \mathbf{V}(y_i)$. Let $y \in \mathbf{Y}$. Since f is surjective, then y = f(x) for some $x \in \mathbf{X}$.

For i = 1, 2, ..., n, let $(x_i, x) \in U = f_2^{-1}(V)$, then $(f(x_i), f(x)) \in V$. Hence $Y = \bigcup_{i=1}^n V(y_i)$. as asserted.

Proposition. Let $f: X \to Y$ be a \mathcal{U} -equivalently continuous surjection, where (X, \mathcal{U}_e) and (Y, ϑ_e) are \mathcal{U} -spaces. If X is \mathcal{U} -connected, then so is Y.

Proof. Let $V \in \vartheta_e$. Since *f* is surjection, then so is f_2 . Since *f* is *U*-equivalently continuous, then $U = f_2^{-1}(V) \in \mathcal{U}_e$. So, $Y^2 = f_2(X^2) = f_2(\bigcup_{n=1}^{\infty} U^n) = \bigcup_{n=1}^{\infty} f_2(U^n) = \bigcup_{n=1}^{\infty} V^n$

Hence, Y is \mathcal{U} -connected and the proof is now complete.

Poroposition 3.10. Let (X, \mathcal{U}_e) , (Y, ϑ_e) and (Z, \mathscr{W}_e) be \mathcal{U} -equivalence spaces and $f: X \to Y$ be a \mathcal{U} -equivalently continuous surjection and let $g: Y \to Z$ be a function.

If $g \circ f : X \to Z$ is \mathcal{U} -equivalently, open then so is g.

Proof. let $V \in \vartheta_e$ and $U = f_2^{-1}(V)$. Since *f* is \mathcal{U} -equivalently continuous, then $U \in \mathcal{U}_e$. Moreover, since *f* is \mathcal{U} -equivalently open, then there exists $W \in \mathscr{W}_e$ such that

 $W((g \circ f)(x)) \subseteq (g \circ f)(U(x))$ for all $x \in X$. We clain that $W(g(y)) \subseteq g(V(y))$ for all $y \in Y$. To see this, let $y \in Y$ and $z \in W(g(y))$. Since f is surjection, then y = f(x) for some $x \in X$. So $W(g(y)) \subseteq (g \circ f)(U(x))$ (I).

Hence by (I), there exists $x_1 \in X$ such that $(x, x_1) \in U$, $z = g(f(x_1))$. Let $t = f(x_1)$. Then z = g(t), $(y, t) \in V$ i.e. $z \in g(V(y))$ as required.

Let us present another classification of saturated U-connected spaces as follows.

Theorem. In a saturated \mathcal{U} -equivalence space (X, \mathcal{U}_e) the following statements are equivalent:

1) X is \mathcal{U} -connected

2) for each discrete space D, every \mathcal{U} -equivalently continuous function $\lambda : X \to D$ is constant.

Proof. (1) \rightarrow (2). Given a *U*-equivalently continuous function $\lambda : X \rightarrow D$

Where D is discrete i.e. $U_{D} = \{V \subseteq D^2 | V \text{ is an equivalence relation on } D\}$.

Consider the pre-image $U = \lambda_2^{-1}(\Delta_D)$ of the diagonal Δ_D of D. Then $U \in \mathcal{U}_e$, and $U^n = U$ for all n, because $\Delta_D^n = \Delta_D$. Since X is \mathcal{U} -connected then $X^2 = \bigcup_{i=1}^{\infty} U^n = U$.

On the other hand, $U = \{(x_1, x_2) \in X^2 | \lambda(x_1) = \lambda(x_2)\}$. Hence λ is constant.

(2) \rightarrow (1). Suppose that X is not \mathcal{U} -connected.

Then there exists $U \in U_e$ and $x_0, y_0 \in X$ such that $(x_0, y_0) \notin U^n$ for all n. Taking $D = \{0, 1\}$ equipted with discrete U-equivalence class.

Define $\lambda : X \to D$ by $\lambda(x) = 0$ when $(x_0, x) \in D^i$ for some i and $\lambda(x) = 1$ otherwise. Hence $\lambda(x_0) = 0$ and $\lambda(y_0) = 1$ i.e. λ is not constant. We claim that λ is \mathcal{U} -equivalently continuous.

We first show that $U \subseteq \lambda_2^{-1}(\Delta_D)$. If this is not so, then there exists $(x_1, x_2) \in U$,

 $\lambda(x_1) \neq \lambda(x_2)$. Assume that $\lambda(x_1) = 1$, $\lambda(x_2) = 0$. Hence there exists $i \in N$, $(x_0, x_2) \in U^i$. Consequently, $(x_0, x_1) \in U^{i+1}$ contradicting that $\lambda(x_1) = 1$. Hence $U \subseteq \lambda_2^{-1}(\Delta_D)$. So for each $V \in \mathcal{U}_D$, $\lambda_2^{-1}(V) \supseteq \lambda_2^{-1}(\Delta_D) \supseteq U$. Whence $\lambda_2^{-1}(V) \in \mathcal{U}_e$ because \mathcal{U}_e is saturated.

Hence λ is \mathcal{U} -equivalently continuous function while it is not constant, that is a contradiction. This proves that X is \mathcal{U} -connected.

We omit the straightforward proof of the following proposition.

Proposition. Let (X, \mathcal{U}_e) , (Y, ϑ_e) be \mathcal{U} -equivalence spaces where ϑ_e is saturated. Then a bijection $f: X \to Y$ is \mathcal{U} -equivalently open if and only if its inverse is \mathcal{U} -equivalently continuous.

Proposition. Let (X, \mathcal{U}_e) , (Y, ϑ_e) and (Z, \mathscr{W}_e) be \mathcal{U} -equivalence spaces and $f: X \to Y$ be a function and let $g: Y \to Z$ be \mathcal{U} -equivalently continuous injection. If $g \circ f$ is \mathcal{U} -equivalently open, then so is f.

Poof. Let $U \in U_e$. Then there exists $W \in w_e$, $W(h(x) \subseteq h(U(x))$ for all $x \in X$ where h = g of. Since g is U-equivalently continuous, then the pre-image $V = g_2^{-1}(W)$ is a member of ϑ_e . Now it is easy to see $V(f(x)) \subseteq f(U(x))$ for all $x \in X$. it follows that f is U-equivalently open as asserted.

Proposition. Let $f: X \to Y$ be a \mathcal{U} -equivalently open function, where X is non-empty, (X, \mathcal{U}_e) is rich and (Y, ϑ_e) is \mathcal{U} -connected. Then f is surjection.

Proof. Let $U = X^2$, Then there exists $V \in \vartheta_e$ such that $V(f(x)) \subseteq f(U(x))$ for all $x \in X$. consequently, $V(f(x)) \subseteq f(X)$ for all $x \in X$. Hence for each n and each $x \in X$,

 $V^{n}(f(x)) \subseteq f(X)$. Let $x_{0} \in X$ and let $y_{0} = f(x_{0})$. We claim Y = f(X).

To see this, let $y \in Y$, then $(y_0, y) \in Y^2 = \bigcup_{n=1}^{n} V^n$. Hence, $y \in V^n(f(x_0))$ for some n. Since $V^n(f(x_0)) \subseteq f(X)$, then $y \in f(X)$. This proves Y = f(X).

Definition Let $f \in \mathbf{X} \to \mathbf{X}$ be a manual for f

Definition. Let $f : X \to Y$ be a map where (X, \mathcal{U}_e) is a \mathcal{U} -equivalence space and Y is a set. We say that f is transverse to X if there exists $U \in \mathcal{U}_e$ such that

 $U \cap f_{2^{-1}}(\Delta_Y) = \Delta_X$. By a local \mathcal{U} -equivalence we mean, a \mathcal{U} -equivalently continuous and \mathcal{U} -equivalently open function $f: X \to Y$, where (X, \mathcal{U}_e) and (Y, ϑ_e) are \mathcal{U} -equivalence spaces such that f is transverse to X.

Proposition. Let $f : X \to Y$ be a \mathcal{U} -equivalently continuous function. Suppose f admits a left inverse g which is local \mathcal{U} -equivalence. Then f is \mathcal{U} -equivalently open.

Proof. Let $U \in \mathcal{U}_e$. Then $V_1 = g_2^{-1}(U) \in \vartheta_e$ because g is \mathcal{U} -equivalently continuous. Since g is transverse to Y, then there exists $V_o \in \vartheta_e$ such that $V_o \cap g_2^{-1}(\Delta_X) = \Delta_Y$. Let $V_2 = (f \circ g)_2^{-1}(V_0)$. Then since $f \circ g$ is \mathcal{U} -equivalently continuous, $V_2 \in \vartheta_e$. Finally let $V = V_0 \cap V_1 \cap V_2$. We claim $V(f(x)) \subseteq f(U(x))$ for all $x \in X$. suppose $y \in V(f(x))$. Then $(x, g(y)) \in U$. Finally, we have to show that f(g(y)) = y.

Since $(g(y), g(y)) \in \Delta_X$, then $(f(g(y), y) \in g_2^{-1}(\Delta_X))$.

Also, $(y, f(x)) \in V_0$ and $(f(x), (f(g(y)) \in V_0$. Hence, $(f(g(y)), y) \in V_0$. consequently, $(f(g(y)), y) \in \Delta_Y$ that means, f(g(y)) = y.

Proposition. Let $f: X \to Y$ and $g: Y \to Z$ be \mathcal{U} -equivalently continuous functions, where (X, \mathcal{U}_e) , (Y, ϑ_e) and (Z, \mathscr{W}_e) are \mathcal{U} -equivalence spaces $g \circ f$ is \mathcal{U} -equivalently open, f is injective and g is transverse to Y. The $g \circ f$ is a local \mathcal{U} -equivalence.

Proof. Since g is transverse to Y, there exists $V \in \vartheta_e$ such that $V \cap g_2^{-1}(\Delta_z) = \Delta_Y$. Let $U = f_2^{-1}(V)$. Then $U \in \mathcal{U}_e$. Now we have to show that $U \cap ((g \circ f)_2^{-1}(\Delta_z) = \Delta_X$.

Clearly, $\Delta_{\mathbf{x}} \subseteq U \cap ((g \circ f)_2^{-1}(\Delta_{\mathbf{z}}))$. For the other way inclusion, let $(x_1, x_2) \in U$ and $g(f(x_1) = g(f(x_2))$. Then $(f(x_1), f(x_2)) \in V \cap g_2^{-1}(\Delta_{\mathbf{z}}) = \Delta_{\mathbf{x}}$. So $f(x_1) = f(x_2)$ and since f is injective, $x_1 = x_2$. Hence $U \cap (g \circ f)_2^{-1}(\Delta_{\mathbf{z}}) = \Delta_{\mathbf{x}}$.

QUOTIENT u -EQUIVALENCE SPACES

Let (X, \mathcal{U}_e) be a \mathcal{U} -equivalence space and let \mathcal{R} be an equivalence relation on X.

Also, let $\pi: X \to X/\mathcal{R}$ is the function defined by $\pi(x) = \mathcal{R}[x]$, where $\mathcal{R}[x] = \{y \in X \mid (x, y) \in \mathcal{R}\}$. The function π is called the natural projection.

Now we ask whether X/ \mathcal{R} can inherits a \mathcal{U} -equivalence class from X such that makes the natural projection π \mathcal{U} -equivalently continuous, and if the answer is yes, then we discuss the relationships between these two spaces.

Definition. An equivalence relation \mathcal{R} on a \mathcal{U} -equivalence space (X, \mathcal{U}_e) is compatible with \mathcal{U}_e if for each $U \in \mathcal{U}_e, \mathcal{R} \circ U = U$

For example, let X be a non-empty set and $\mathcal{R} = \Delta_X$ Then \mathcal{R} is compatible with $\{X^2\}$.

The following lemma is often useful.

Lemma. Let \mathcal{R} be an equivalence relation on a \mathcal{U} -equivalence space (X, \mathcal{U}_e) . Then the following statements are equivalent:

i) \mathcal{R} is compatible with \mathcal{U}_e .

ii) For each U $\in \mathcal{U}_e$, U o $\mathcal{R} = U$.

iii) For each U $\in \mathcal{U}_e$, $\mathcal{R} \circ \cup \circ \mathcal{R} = U$.

iv) For each U $\in \mathcal{U}_{e}$, U $\circ \mathcal{R} \circ U = U$.

Proof. The equivalence of (i) with (ii) is trivial.

Assume (ii) holds and suppose $U \in U_e$, Then $U \circ \mathcal{R} = U$ and hence $\mathcal{R} \circ U \circ \mathcal{R} = \mathcal{R} \circ U$. Since $U \circ \mathcal{R} = U$, then the equivalence of (i) with (ii) implies $\mathcal{R} \circ U = U$. Hence $\mathcal{R} \circ U \circ \mathcal{R} = U$. The other parts result by straightforward calculations.

Theorem. Let \mathcal{R} be a compatible equivalence relation on a \mathcal{U} -equivalence space (X, \mathcal{U}_e). Then the images of the members of \mathcal{U}_e under π_2 , form a \mathcal{U} -equivalence class on X / \mathcal{R} . We refe to this class as the quotient \mathcal{U} -equivalence class and to X / \mathcal{R} with this structure, as the quotient \mathcal{U} -equivalence space.

We recall that X / \mathcal{R} is the collection of all equivalence classes \mathcal{R} [X], and $\pi_2(x, y) =$

 $(\pi(x), \pi(y)) = (\mathcal{R}[x], \mathcal{R}[y])$

Proof. Let \mathcal{U}_e^{π} denotes this collection i.e. $\mathcal{U}_e^{\pi} = \{\pi_2(\mathbf{U}) \mid \mathbf{U} \in \mathcal{U}_e\}.$

We first show each member of \mathcal{U}_e is an equivalence relation on X / \mathcal{R} . Let $V = \pi_2(U)$ where $U \in \mathcal{U}_e$ and let $x \in X$.

Then $(\mathcal{R}[x], \mathcal{R}[x]) = \pi_2(x, x)$ and $(x,x) \in \Delta_X \subseteq U$. Hence $\Delta_X / \mathcal{R} \subseteq V$ and so V is reflexive. Clearly V is symmetric. Now we show that V is transitive.

Let $(\mathcal{R}[x], \mathcal{R}[y]) \in V$ and let $(\mathcal{R}[y], \mathcal{R}[z]) \in V$. Then $(\mathcal{R}[x], \mathcal{R}[y]) = (\mathcal{R}[t_1], \mathcal{R}[t_2]), (t_1, t_2) \in U$. Also $(\mathcal{R}[y], \mathcal{R}[z]) = (\mathcal{R}(u_1), \mathcal{R}(u_2)), (u_1, u_2) \in U$.

Hence $(\mathcal{R}[x], \mathcal{R}[z]) = (\mathcal{R}[t_1], \mathcal{R}[u_2])$. Since $(t_1, t_2) \in U$, $(t_2, u_1) \in \mathcal{R}$ and $(u_1, u_2) \in U$, then $(t_1, u_2) \in U \circ \mathcal{R} \circ U$. Now compatibility of \mathcal{R} with \mathcal{U}_e , implies $(t_1, u_2) \in U$. Hence $(\mathcal{R}[x], \mathcal{R}[z]) = \pi_2(t_1, u_2), (t_1, u_2) \in U$.

So $(\mathcal{R}[x], \mathcal{R}[z]) \in \pi_2(U) = V$. Whence V is transitive.

Finally, We show that the intersection of two members of \mathcal{U}_e^{π} is a member of \mathcal{U}_e . Let $V_1 = \pi_2(U_1)$ and $V_2 = \pi_2(U_2)$, where $U_1, U_2 \in \mathcal{U}_e$, be two members of \mathcal{U}_e^{π} .

We contend that $V_1 \cap V_2 = \pi_2(U_1 \cap U_2)$ which shows that $V_1 \cap V_2 \in \mathcal{U}_e^{\pi}$

Clearly $\pi_2(U_1 \cap U_2) \subseteq \pi_2(U_1) \cap \pi_2(U_2)$. Now let $(\mathcal{R}[x], \mathcal{R}[y]) \in \pi_2(U_1) \cap \pi_2(U_2)$.

Then $(\mathcal{R}[x], \mathcal{R}[y]) = (\mathcal{R}[t_1], \mathcal{R}[t_2]), (t_1, t_2) \in U_1$

 $_{=}(\mathcal{R}[u_{1}],\mathcal{R}[u_{2}]),(u_{1},u_{2})\in U_{2}.$

Consequently, $(\mathcal{R}[x], \mathcal{R}[y]) = (\mathcal{R}[t_1], \mathcal{R}[u_2]$. But $(t_1, u_2) \in \mathcal{R} \cup U_2 = U_2$ and,

 $(t_1, u_2) \in U_1 \cap \mathcal{R} = U_1$. Hence, $(\mathcal{R}[x], \mathcal{R}[y]) = (\mathcal{R}[t_1], \mathcal{R}[u_2]), (t_1, u_2) \in U_1 \cap U_2$. So $(\mathcal{R}[x], \mathcal{R}[y]) \in \pi_2(U_1 \cap U_2)$. Hence, $\pi_2(U_1 \cap U_2) = \pi_2(U_1) \cap \pi_2(U_2)$.

Theorem. Let \mathcal{R} be an equivalence relation on X, compatible with \mathcal{U}_e where (X, \mathcal{U}_e) is a \mathcal{U} -equivalence space. Then π is \mathcal{U} -equivalently continuous and \mathcal{U} -equivalently open. **Proof.** We first show that π is \mathcal{U} -equivalently open. Let $U \in \mathcal{U}_e$ and $V = \pi_2(U)$. Then $V \in \mathcal{U}_e^{\pi}$. We claim that $V(\pi(x)) \subseteq \pi(U(x))$ for all $x \in X$.

Let $x \in X$ and let $\mathcal{R}[t] \in V(\pi(x)) = V(\mathcal{R}[x])$ We will show there exists $u \in X$ such that $\mathcal{R}[t] = \mathcal{R}[u]$ and $(x, u) \in U$. Since $R[t] \in V[\mathcal{R}[x]]$, then there exists $(t_1, t_2) \in U$ such that $(\mathcal{R}[x], \mathcal{R}[t]) = (\mathcal{R}[t_1], \mathcal{R}[t_2])$. Hence $\mathcal{R}[t] = \mathcal{R}[t_2]$ and $(x, t_2) \in \mathcal{R} \cup U$. Let $u = t_2$. Then R[t] = R[u] and $(x, u) \in U$ as required.

Now we prove that π is \mathcal{U} -equivalently continuous. Let $V \in \mathcal{U}_e^{n}$. We show that

 $\pi_2^{-1}(V) \in \mathcal{U}_e$. There exists $U \in \mathcal{U}_e$ such that $V = \pi_2(U)$. On one hand we have $\pi_2^{-1}(V) = \pi_2^{-1}(\pi_2(U)) \supseteq U$. On the other hand, if $(x_1, x_2) \in \pi_2^{-1}(V)$, then $(\mathcal{R}[x_1], \mathcal{R}[x_2]) = (\mathcal{R}[t_1], \mathcal{R}[t_2]), (t_1, t_2) \in U$. Hence $(x_1, x_2) \in \mathcal{R} \cup \mathcal{O} \mathcal{R} = U$. So $\pi_2^{-1}(V) \subseteq U$. And hence $\pi_2^{-1}(V) = U \in \mathcal{U}_e$.

Acknowledgment

The authors declare that they have no conflicts of interest in the research.

REFERENCES

- [1] J.R. Munkres, Topology-A First Course, Prentice-Hall, New Delhi, 1978.
- [2] S. Willard, General Topology, Addison-Wesley, Reading, 1970.
- [3] J.L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
- [4] I.M. James, Topological and Uniform Speces, Springer, New York, 1987.
- [5] W. Page, Topological and Uniform Structures, Wiley, New York, 1978.
- [6] R. Fuller, Uniform Continuity and Net Behavior, Annales Societatis Mathematicae Plonae, Comentationes Mathematicae XVI, 1972, 165-167.
- [7] A. Weil, Sur les Espaces a Structure Uniforme et sur la Topologie Gnerale, Actualites Sci. Ind. 551, Paris, 1937.
- [8] B. Hutton, Uniformities of Fuzzy Topological Spaces, J. Math. Anal. Appl. 58(1977), 559-571.
- [9] D. Zhang, Stratified Hutton Uniform Spaces, Fuzzy Sets and Systems 131, (2002), 337-346.
- [10] D.K. Mitra and D. Hazarika, L-locally Uniform Spaces, J. Fuzzy Math.18(2002), 505-516.
- [11] Turkoglu D, Ozer O and Fisher B, Some Fixed Point Theorems for Set Valued Mapping in Uniform Spaces, Demonstratio Math. 2(1999), 395-400.
- [12] M. Katetov, On Continuity Structures and Spaces of Mappings, Comm. Math. Univ. Carolinae, 6(1965), 257-278.