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ABSTRACT

In this paper the notion of U-equivalence space is introduced. It is proved that the topology induced by a U-
equivalence space is regular. U-equivalent continuous functions and U-equivalent open functions are studied.
Finally, the quotient U-equivalence spaces are introduced and discussed.
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INTRODUCTION

Uniform spaces are somewhere the midway points between metric spaces on one hand and abstract topological
spaces on the other hand.

There are however a few aspects of metric spaces that are lost in general topological spaces. For example, since the
notion of nearness is not defined for a general topological space, we cannot define the notion of uniform continuity
in abstract topological spaces. The same can be said about the other notions such as total boundedness. A uniform
space, which is due to A. Weil [7] is a mathematical construction in which such ‘uniform’ concepts are still
available.

In this paper we introduce a new construction, namely, U-equivalence space that is almost like a uniform space [4,
5]. We will show that the topological space induced by a U-equivalence space, is a regular topological space. In the
theory of U-equivalence spaces, the structure-preserving functions, in the inverse image sense, are ‘U-equivalent
continuous functions which are considered in section 3. Also, there is another way of forming a category where the
objects are U-equivalence spaces and the morphisms are structure-preserving functions in the direct image sense.
We refer to these functions as the U-equivalently open functions (see [4, 5]).

The notion of quotient uniform space was introduced by I.M. James [4]. We introduce and discuss a suitable notion
for the quotient U-equivalence space in section 4. In particular we explore several properties of such spaces.

BASIC NOTIONS
Let us begin this section with the definition of the U-equivalence class on a set.

Definition. A U-equivalence class on a set X is a non-empty collection U, of equivalence relations on X such that
U, is closed under finite intersections.

A simple example of a U-equivalence class on a set X, is the collection of all equivalence relations on X which is
called discrete U -equivalence class.

Theorem. The collection y, -{U(a) | a € X, U € U, }, where

U(a) -{x € X| (a, x) e U} forms a base for a topology on X.

The topology generated by this base, is called U-equivalence topology and denoted by 7.

Corollary. Let Ge 1, and xe G. Then there exists U e U, such that xe U(x) < G. Hence the collection {U(a) |
U e U,} forms a local base [1,3] at a.

Proof. By theorem 2.2, there exists U(a) such that x e U(a) < G.

Since x e U(a) and U is an equivalence relation on X, then U(x) -U(a). Hence x € U(x) € G as asserted. =m
Proposition. Let (X,U,) be a U-equivalence space. Then the following statements are equivalent:

1. The topological space (X, t,) is a Hausdorff topological space.

2. The intersection of all members of U, coincides with A,.

Proof. Suppose (1) holds. Since A, is contained in any member of U,, then

A, € n U as Uranges over all members of U,.

For the other way inclusion, assume (x, y) belongs to each U, we will show that
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X = y. If this is not so, then since X is Hausdorff, there exists U € U, and V € U, such that U(x) N V(y) - ®. If W -
UnV,then We U, and W(x) n W(y) - @, whence (x, y) € W that is a contradiction with assumption.

(2)=(1). Assume x, y are distinct members of X. Then by (2), there exists U € U, such that (x, y) € U. Hence U(x) N
U(y) = @. So the topological space (X, t,) is a Hausdorff topological space. m

Definition. Let A, B be subsets of a U-equivalence space (X, U,) We say that A and B are U-adjacent if for each
U e U, there exists a € A and b e B such that

(a, b) e U. In particular if x, e X and A< X, X, is adjacent to A if and only if for each U e U,, there exists a € A
such that (x,, a) € U.

Proposition. Let (X, U,) be a ‘U -equivalence space, x, € X and let A € X. Then X, is U-adjacent to A if and only
if X, € A where A is the closure of A with respect to ..

Proof. Suppose X, is adjacent to A and G is a neighbourhood of x,. By corollary 2.3, there exists U € U, such that
U(x,) € G.
Since X, is adjacent to A, then there exists a e A such that (x,, a) € U.

Hence U(x,) N A # @. This impliessGN A . ®. S0 X, €A .

Conversely let X, € A and let U € U, . Since U(X,) is a neighbourhood of x,, then U(x,) N A # @. Let a € U(X,) N A.
Then a e Aand (X, a) € U asrequired. m
Theorem. Every U-equivalence space is a regular topological space.

Proof. We first show that the set U(A) - {xeX | (a, X)eU for some a e A} is open and A< U(A), where
UelU, and Ac X.

Let x e U(A). Then there exists a e A such that (a, x) e U. We claim U(x) € U(A). If ze U(x), then (x, z) € U. Since
U is transitive, then (a, z) e U and it follows that

ze U(A). So U(A) is open. Obviously, A < U(A).

Now suppose x, € X and A is a closed subset of X not containing X,. Then there exists G € t, such that x, e G and
G n A -®. By proposition 2.3, there exists

U e, such that U(x,) € G. Hence, U(x,) N A -®. We claim U(x,) N U(A) - ®.

If this is not so, then U(x,) N U(A) £o. If zeU(x,) N U(A), then (x,, z) e U and there exists a; € A such that (a,
7) e U.

Hence (X,, a1) € U or a; € U(X,) N A contradicts that U(x,) N A - ®. This implies the result. =
The following corollary follows from theoren 2.7 and proposition 2.4.

Corollary. Let (X, U,) be a U -equivalence space sothat N{U: UeU,}- A, - Then (X, t,) isa Tz-space [1].
Theorem. Let (X, U,) be a U-equivalence space. Then the topological space

(X, 7,) is connected if and only if it admits the trivial ‘U-equivalence class {X?}.

Proof. First suppose X admits the trivial equivalence class, i.e. U, - {X?}. We show that X is connected. To see
this, Let G be open and closed in X (with respect tot,) and let G #o. We have to show that G - X. Let x€ G. By

proposition 2.3, there exists U e U, such that U(x) € G. Since U, is trivial, then U(x) - X. S0 G = X.
So the empty set and the whole set are the only sets in X which are both open and closed and hence X is connected.

Conversely, assume (X, 7,) is connected and U e U,. We have to show that U - X% Let x, € X. From the definition
of 7., we see immediately that U(x,) is open. Also we show that U(x,) is closed. To do this, it is sufficient to show
that U(X,) S U(X,), where U(x,) is the closure of U(x,) with respect to 7, [1].

If z e U(x,), then U(Z) N U(x,) # o. Consequently, (Xo, Z) € U or, z € U(X,). So U(X,) is also closed. So U(x,) = ® or
U(Xo) = X. Since X, € U(X,), then U(x,) = X. So U(x) - X for all x € X. Consequently, U - X2 Hence U, -{X*}. m
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Proposition. Let (X, U,) be a U-equivalence space and let A < X. Then:

a) A-n{U:UeU,}, where A isthe closure of A with respect to z,.
b) U(A) is closed and open in X.

Proof. a) Letx e A and let U € U, . Then A N U(x) #o.

If ae AnU(x), then (a, x) € U and henee, xe U(a). So A< n{U: UeU,}.

For the other way inclusion, Let xe n{U : U e U,} and let G be a neighbourhood of x,. By corollary 2.3, there exists
U e U,such that U(x) € G.

Since x € U(A), then there exists a € A such that (a, X) e U. Thus G N A #o. Hence x e A. This shows that N{U :

UeU,} SA.
b) Evidently, U(A) is open.

On the other hand, by using (a), U(A) = n V(U(A) € U(V(A)) SU(A). The last statement is true, because U is an
equivalence relation on X. So, U(A) is closed. m
The following corollary is easily obtained from part (a) of proposition 2.10.

Corollary. Let (X, U,) be a U -equivalence space. A subset A of X is dense in X (w.r.t t,) If and only if U(A) - X
for every U e U,.

CONTINUITY
In the theory of U-equivalence spaces the structure-preserving functions, in the inverse-image sense, are the U-
equivalently continuous functions, defined as follows.

Definition. Let (X, U,), (Y,9,) be U-equivalence spaces, and let f: X — Y be a function. f is said to be U-

equivalently continuous if f,*(V) €U, for each Ve 9, where f,*(V) -{(x, y) € X*| (f(x), f(y)) € V}.

Clearly the identity function on any U-equivalence space (X, U,) is U-equivalently continuous.

Definition. A U-equivalence class U, is said to be saturated if Ue U, and U< V, where V is an equivalence
; ; S 2

Proposition. Let (X, U,) and (Y, 9,) be two U -spaces and let U, be saturated.

Then a function f: X — Y is ‘U-equivalently continuous, if for each V €9,

there exists U e U, such that f,(U) € V.
Proof. The ‘only if’ part of the proposition is a simple consequence of definition 3.1. To prove the “if’ part, let

Ved, We will show that f,' (V) eU,. If UelU, and fo(U) S V, then U c f, *(V). Since V is an equivalence
relation on Y, then f,(V) is an equivalence relation on X. Now since U, is saturated, f,"(V) € U, as asserted. m

Proposition. Let (X, U,), (Y,9,) be U-equivalence spaces and let f: X — Y be U-equivalently continuous
function. Then f is continuous when regarded as a function from topological space X in to topological space Y.

Definition. The U-equivalence space (X, U,) is said to be U-connected if for each U e U,, X2 ul U" where U" -

Uo U o...0U (n-times).

For example, the discrete U-equivalence space X is never U-connceted provided that the underlying set has at least
two points. On the other hand, the trivial U-equivalence space is always U-connected.

Defintionn. The U-equivalence space (X, U,) is totally bounded if for each U € U, there exist Xy, Xy, ..., X, € X such

that X - Ul U(x;). For example, the trivial U-equivalence space is always totally bounded.

Definition. Let (X, U,), (Y,9,) be U-equivalently spaces and f: X — Y be a function. f is said to be U-
equivalently open if for each U e U,, there exists V € 9, such that V(f (x)) < f (U(x)) for all x € X.

Proposition. Let f : X— Y be a U-equivalently continuous surjection, where (X, U,) and (Y,9,) are U-
equivalence spaces. Moreover let X be totally bounded. Then sois Y.
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Proof. Let V €9 .. We claim that there existyy, Y,..., yae Y sothat Y - Ui V(yi).

Suppose U -f,*(V), then U € U,, because f is U-equivalently continuous.
Since X is totally bounded, then there exist X; X,,.., X, € X such that X - Ui U(x).

If y; - f(x;), then we will show that Y - U1 V(yi). Let yeY. Sincef is surjective, theny - f(x) for some x € X.

n

Fori-1,2..n, let(x,x) € U-f,(V), then (f(x), f(x)) € V. Hence Y - U V(y;). as asserted. m

i=1

Proposition. Let f : X - Y be a U-equivalently continuous surjection, where (X, U,) and (Y, 9,_) are U-spaces. If
X is U-connected, then sois Y.

Proof. Let Ve 195. Since f is surjection, then so is f,. Since f is U-equivalently continuous, then U - f, (V) € U,. So,
V2R =R U)-U R u)-U v

Hence, Y is U-connected and the proof is now complete. =
Poroposition 3.10. Let (X, U,), (Y,9,) and (Z, w,) be U-equivalence spaces and f: X =Y beaU-

equivalently continuous surjection and let g : Y — Z be a function.
If gof: X —Zis U-equivalently, open then so is g.

Proof. let VeV, and U - f,2(V). Since f is U-equivalently continuous, then U e U,- Moreover, since f js -
equivalently open, then there exists W e w, such that

W((g 0 f)(X)) € (g 0 f)(U( x)) for all x e X. We clain that W(g(¥)) < g (V(y)) for all y € Y. To see this, lety e Y and
ze W(g(y))- Since f is surjection, then y - f(x) for some x e X. So W(g(y)) c (g o f) (U(x)) (1).

Hence by (1), there exists x; € X such that (x, x1) € U, z - g(f(x0)). Let t - f(x). Then z -g(t), (v, t) € V i.e. ze g(V(y))
asrequired. m

Let us present another classification of saturated U-connected spaces as follows.

Theorem. In a saturated U-equivalence space (X, U,) the following statements are equivalent:

1) X'is U-connected

2) for each discrete space D, every U-equivalently continuous function A : X — D is constant.

Proof. (1) — (2). Given a U-equivalently continuous function A : X - D

Where D is discrete i.e. Up= {V < D? Vis an equivalence relation on D}.

Consider the pre-image U - 1,™(Ap) of the diagonal A, of D. Then Ue U,, and U" - U for all n, because A _
Ap. Since X is U-connected then X2 - le u'-u.

On the other hand, U - {(x, X2) € X?| A(X1) = M(X2)}. Hence A is constant.

(2) = (1). Suppose that X is not U-connected.

Then there exists U € U, and X, Y, € X such that (X,, y,) & U" for all n. Taking D -{0, 1} equipted with discrete
U-equivalence class.

Define & : X — D by A(x) = 0 when (X, X) € D' for some i and 3(x) - 1 otherwise. Hence A(X,) =0 and A(y,) - 1 i.e. A is
not constant. We claim that A is U-equivalently continuous.

We first show that U € 2, ( Ap). If this is not so, then there exists (xq, X,) € U,

AMX1) £ A(X2). Assume that A(x) = 1, A(Xz) = 0. Hence there exists i €N, (Xo, X) € U'. Consequently, (Xo, X1) € U™
contradicting that A(x) - 1. Hence U € A, %( Ap). So for each V e Up, A,*(V) 2 A% (Ap) 2 U. Whence 2,*(v) € U,
because U, is saturated.
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Hence A is U-equivalently continuous function while it is not constant, that is a contradiction. This proves that X is

U-connected. =
We omit the straightforward proof of the following proposition.

Proposition. Let (X, U,), (Y, ¥.) be U-equivalence spaces where 9, is saturated.Then a bijection f: X — Y'is
U-equivalently open if and only if its inverse is U-equivalently continuous.

Proposition. Let (X, u,), (Y,9.) and (Z, w, ) be U-equivalence spaces and f: X — Y be a function and let g :
Y — Z be U -equivalently continuous injection. If gof is U-equivalently open, then so is f.

Poof. Let U e U,. Then there exists W e w,, W(h(x) S h(U(x)) for all x e X where h - g o f. Since g is U-

equivalently continuous, then the pre-image V - g, (W) is a member of 9 ,. Now it is easy to see V(f(x)) S f(U(x))
for all x e X. it follows that f is U -equivalently open as asserted. =

Proposition. Let f: X —Y be a U-equivalently open function, where X is non-empty, (X, 1,) isrich and (Y, 9 ,)
is U-connected. Then f is surjection.

Proof. Let U - X%, Then there exists V € 9, such that V(f(x)) € f(U(x)) for all x € X. consequently, V(f(x)) € f(X)
for all x e X. Hence for each n and each x € X,

V'(f(x)) € f(X). Let X, e X and let y, - f(X,). We claim Y - f(X).

To see this, let ye Y, then (Yo, y) € Y2 - Ql V", Hence, y e V"(f(x,)) for some n. Since V"(f(x,)) € f(X), then y e
f(X). This proves Y - f(X). =

Definition. Let f : X »Y be a map where (X, U,) is a U-equivalence space and Y is a set. We say that f is
transverse to X if there exists U € Ue such that

unfl(ay) - Ax. By a local U -equivalence we mean, a U-equivalently continuous and U-equivalently open
function f : X - Y, where (X, U,) and (Y, 9 ,) are U-equivalence spaces such that f is transverse to X.

Proposition. Let f : X - Y be a ‘U-equivalently continuous function. Suppose f admits a left inverse g which is local
‘U-equivalence. Then f is U-equivalently open.

Proof. Let Ue U,. Then V;-g,"(U) € 9, because g is U-equivalently continuous. Since g is transverse to Y, then
there exists V, € 9, such that Vo n gt (Ax) = Ay. Let V, - (f 0 g)," (Vo). Then since f o g is U-equivalently
continuous, V, € 9 - Finally let V.- Vonv, nVv,. We claim V(f(x)) S f(U(x)) for all x € X. suppose y € V/(f (x)).
Then (x g(y)) € U. Finally, we have to show that f(g(y)) -V.

Since (9(y), 9(y)) € A, then (f(g(y), ) € 92" (Ax).

Also, (y, f(x)) € Vo and (f (x), (f(a(y)) € Vo. Hence, (f(a(y)), y) € Vo . consequently, (f(g(y)), y) € Ay that means,
fay) =y. =

Proposition. Let f : X— Y and g : Y - Z be ‘U-equivalently continuous functions, where (X, U,), (Y, 9,) and
(Z, w,) are U-equivalence spaces g o fis U-equivalently open, f is injective and g is transverse to Y. Thegof isa
local U-equivalence.

Proof. Since g is transverse to Y, there exists V €9 , such that V N g, (A;) - Ay. Let U - (V). Then Ue,.
Now we have to show that U n ((g 0 f),™(4,) - A,.

Clearly, A, € U N ((g o f),( A,). For the other way inclusion, let (x1, x2) € U and g(f(x,) - g(f(x). Then (f(xo), f(x2)) €
VN g l(Ay) - Ay. So f(xy) - f(xo) and since f is injective, X; = X,. Hence U N (g 0 ), (A,) - Ax. m

QUOTIENT ‘U -EQUIVALENCE SPACES
Let (X, U,) be a U-equivalence space and let R be an equivalence relation on X.
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Also, let w: X = X/ R is the function defined by n(x) - R[x], where R[x] -{y € X | (X, y) € R}. The function = is
called the natural projection.

Now we ask whether X/ R can inherits a U-equivalence class from X such that makes the natural projcetion = U-
equivalently continuous, and if the answer is yes, then we discuss the relationships between these two spaces.

Definition. An equivalence relation R on a U-equivalence space (X, U,) is compatible withU, if for each
Uel, RoU-U

For example, let X be a non-empty set and R - Ax Then R is compatible with {X?}.

The following lemma is often useful.

Lemma. Let R be an equivalence relation on a ‘U-equivalence space (X, U.). Then the following statements are
equivalent:

i) R is compatible with U,.

ii) ForeachUeU,, UOR -U.

iii) ForeachUeU,, RoUoR -U.

iv) ForeachUeU,, UoRoU-U.
Proof. The equivalence of (i) with (ii) is trivial.

Assume (ii) holds and suppose U e U,, Then UoR _y and hence RoUoR = RoU. Since UoR _y, then the
equivalence of (i) with (ii) implies RoU = U. Hence RoUOR _ U.The other parts result by straightforward
calculations. m

Theorem. Let R be a compatible equivalence relation on a U-equivalence space (X, U,). Then the images of the
members of U, under m,, form a U-equivalence class on X/ R. We refe to this class as the quotient U-epuivalence
class and to X /R with this structure, as the quotient U-equivalence space.

We recall that X / R is the collection of all equivalence classes R[X], and 7, (X, Y) =

(n(x), m(y)) = (RIX], R[y]) -

Proof. Let U, denotes this collection i.e. U, ={m(U)|UeU,}.

We first show each member of U, is an equivalence relation on X /R. Let V - mp(U) where Ue U, and
let xe X.

Then (R[X], R[X]) = ma(X, X) and (x,x) € Ay < U. Hence Ax/ R SV and so V is reflexive. Clearly V is symmetric.
Now we show that V is transitive.

Let (R[X], R[y]) € V and let (R[y], R[z]) € V. Then (R[x], R[Y]) = ( R [t:], R [tz])), (tz, t2) € U. Also (R[y], R[z]) -
(R(u1), R(uz]), (Uy, u2) € U.
Hence (R[x], R[z]) = (R[ts], R[uz]). Since (13, t;) € U, (tz, uy) e R and (uy, uy) € U, then (t3, u)e UoR o U. Now
compatibility of R with U,, implies (t;, uy) € U. Hence (R [x], R[z]) = ma(ts, Up), (t1, Up) € U.
So (R[x], R[z]) € mx(U) = V. Whence V is transitive. -
Finally, We show that the intersection of two members of U, is a member of U,. Let V; - mp(Uy) and V; -
m(Uy), where Uy, U, € U, be two members of U, -
We contend that V; NV, - mp(U;y N Uyp) which shows that V; NV, e U,
Clearly m(U; N Uy) € mp(Uq) N wp(U,). Now let (R[x], RIY]) € m2(Ur) N wp(Uy).
Then (R[x], R[Y]) = (R[t], R [t2]), (ta, t2) € Uy

= (R[u], R[uz]), (ug, Up) € Uy,
Consequently, (R[x], R[y]) = (R[t1], R[u,]. But (3, u;) e R O U, -U, and,
(t1, Up) € Uy O R -U;. Hence, (R[x], RIY]) = ( R[tu], R[u2]), (t, u2) € Uy N U,. So (R[x], R[y]) € n2(U1 N Uy). Hence,
(U N Up) - mo(Uy) Nmp(Uy). =
Theorem. Let R be an equivalence relation on X, compatible with U, where (X, U,) is a U-equivalence space.
Then = is U-equivalently continuous and U-equivalently open.
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Proof. We first show that = is ‘U-equivalently open. Let UeU, and V - m(U). Then v e, . We claim that V(n

(x) € n(U(x)) for all x € X.

Let x € X and let R[t] € V(z (x)) = V(R[x]) We will show there exists u € X such that R[t] - R[u] and (X, u) e U.
Since R[t] eV[ R[x]], then there exists (ty, t,) € U such that (R[x], R[t]) = (R [t1], R[t2]). Hence R[t]- R[t;] and (X,
t) € RoU-U. letu-t,. Then R[t] = R[u] and (x, u) € U as reqt;zired.

Now we prove that m is U-equivalently continuous. Let Ve U, . Weshow that
1, (V) € U,. There exists U e U, such that V - m,(U). On one hand we have m, (V) - 1,7 (m,(U)) 2 U. On the other
hand, if (X1, X,) € T (V), then (R[x], R[X2]) = ( R[te], R[tz]), (t2, t2) € U. Hence (x3, X)) e RoUoR - U.

So 1, (V) € U. And hence m (V) - U e U,.
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