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ABSTRACT 
 
In this paper the notion of 풰-equivalence space is introduced. It is proved that the topology induced by a 풰-
equivalence space is regular. 풰-equivalent continuous functions and 풰-equivalent open functions are studied. 
Finally, the quotient 풰-equivalence spaces are introduced and discussed. 
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INTRODUCTION 
 

Uniform spaces are somewhere the midway points between metric spaces on one hand and abstract topological 
spaces on the other hand.  
There are however a few aspects of metric spaces that are lost in general topological spaces. For example, since the 
notion of nearness is not defined for a general topological space, we cannot define the notion of uniform continuity 
in abstract topological spaces. The same can be said about the other notions such as total boundedness. A uniform 
space, which is due to A. Weil [7] is a mathematical construction in which such ‘uniform’ concepts are still 
available. 
In this paper we introduce a new construction, namely, 풰-equivalence space that is almost like a uniform space [4, 
5]. We will show that the topological space induced by a 풰-equivalence space, is a regular topological space. In the 
theory of 풰-equivalence spaces, the structure-preserving functions, in the inverse image sense, are  풰-equivalent 
continuous functions which are considered in section 3. Also, there is another way of forming a category where the 
objects are 풰-equivalence spaces and the morphisms are structure-preserving functions in the direct image sense. 
We refer to these functions as the 풰-equivalently open functions (see [4, 5]). 
The notion of quotient uniform space was introduced by I.M. James [4]. We introduce and discuss a suitable notion 
for the quotient 풰-equivalence space in section 4. In particular we explore several properties of such spaces.  
 
BASIC NOTIONS  
Let us begin this section with the definition of the  풰-equivalence class on a set.   
 
Definition. A 풰-equivalence class on a set X is a non-empty collection 풰  of equivalence relations on X such that 
풰  is closed under finite intersections. 
A  simple example of a 풰-equivalence class on a set X, is the collection of all equivalence relations on X which is 
called discrete 풰 -equivalence class. 
 
Theorem. The collection 훾  = {U(푎) | 푎 ϵ X, U ϵ 풰 }, where 
 U(푎) = {x ϵ X | (푎, x) ϵ U} forms a base for a topology on X. 
The topology generated by this base, is called 풰-equivalence topology and denoted by 휏 . 
Corollary. Let G ϵ 휏  and x ϵ G. Then there exists U ϵ 풰  such that x ϵ U(x) ⊆ G. Hence the collection {U(푎) | 
U ϵ 풰 } forms a local base [1,3] at 푎. 
Proof. By theorem 2.2, there exists U(푎)  such that x ϵ U(푎) ⊆ G. 
Since x ϵ U(푎) and U is an equivalence relation on X, then U(x) = U(푎). Hence x ϵ U(x) ⊆ G as asserted.  ■ 
Proposition. Let (X,풰 ) be a 풰-equivalence space. Then the following statements are equivalent: 
1.  The topological space  (X, 휏 ) is a Hausdorff topological space. 
2.  The intersection of all members of 풰  coincides with ∆ . 
Proof. Suppose (1) holds. Since ∆  is contained in any member of 풰 , then  
∆  ⊆ ∩ U as U ranges over all members of 풰 . 
 For the other way inclusion, assume (x, y) belongs to each U, we will show that  
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 x = y. If this is not so, then since  X is Hausdorff, there exists U
 
ϵ 풰  and V

 
ϵ 풰  such that U(x)

 
∩ V(y) = Φ. If W = 

U
 
∩ V, then W

 
ϵ 풰   and W(x)

 
∩ W(y) = Φ, whence (x, y)

 
∉ W that is a contradiction with assumption. 

(2)⇒(1). Assume x, y are distinct members of X. Then by (2), there exists U
 
ϵ 풰  such that (x, y)

 
∉ U. Hence U(x)

 
∩

 U(y) = Φ. So the topological space (X,
 
휏 ) is a Hausdorff  topological space.  ■      

Definition. Let A, B be subsets of a 
 
풰-equivalence space (X,

 
 풰 ) We say that A and B are

 
풰-adjacent if for each 

U
 
ϵ 풰  there exists 

 
푎

 
ϵ A and b

 
ϵ B such that  

(a, b)
 
ϵ U. In particular if xo 

ϵ X and A
 
⊆ X, xo is  adjacent to A if and only if for each U

 
ϵ 풰 ,  there exists 

 
푎

 
ϵ A 

such that (xo, a)
 
 ϵ U. 

Proposition. Let (X,
 
 풰 ) be a 

 
풰 -equivalence space, xo  

ϵ X and let A
 
⊆  X. Then xo is 

 
풰-adjacent to A if and only 

if xo  
ϵ  Ā where Ā is the closure of A with respect to 

 
휏 . 

Proof. Suppose xo is adjacent to A and G is a neighbourhood of  xo. By corollary 2.3, there exists U
 
ϵ 풰   such that 

U(xo) 
⊆  G. 

Since xo is adjacent to A, then there exists 
 
푎 ϵ A such that (xo, 

푎)
 
ϵ U. 

Hence U(xo) 
∩ A 

 
≠  훷. This  implies G

 
∩ A ≠

 
훷. So xo 

ϵ Ā .  
Conversely let xo 

ϵ Ā and let U
 
ϵ 풰

 
. Since U(xo) is a neighbourhood of xo, then U(xo) 

∩ A 
 
≠ 훷. Let 

 
푎 ϵ U(xo) 

∩ A. 

Then 
 
푎 ϵ A and (xo, 

푎)
 
ϵ U as required.  ■ 

Theorem. Every 
 
풰-equivalence space is a regular  topological space. 

 Proof. We first show that the set U(A) = {x
 
ϵ X | (a, x)

 
ϵ U for some 

 
푎

 
ϵ A} is open and A

 
⊆ U(A), where 

U
 
ϵ 풰   and  A

 
⊆ X. 

Let x
 
ϵ U(A). Then there exists 

 
푎

 
ϵ A such that (a, x)

 
ϵ U. We claim U(x)

 
⊆ U(A). If  z

 
ϵ U(x), then (x, z)

 
ϵ U. Since 

U is transitive, then (a, z)
 
ϵ U and it follows that 

 z
 
ϵ U(A). So U(A) is open. Obviously, A

 
⊆ U(A). 

Now suppose xo 
ϵ X and A is  a closed  subset of X not containing xo. Then there exists G

 
ϵ

 
휏   such that xo 

ϵ  G and 
G

 
∩ A = Φ. By proposition 2.3, there exists 

U
 
ϵ 휏    such that U(xo) 

⊆ G. Hence, U(xo) 
∩ A = Φ. We  claim U(xo) 

∩ U(A) = Φ. 
 If this is not so, then U(xo) 

∩ U(A) ≠ Φ. If  z
 
ϵ U(xo) 

∩ U(A), then (xo, z)
 
ϵ U and there exists a1 

ϵ A such that (a1,  
z)

 
ϵ U. 

 Hence (xo, a1) 
ϵ U or a1 

ϵ U(xo) 
∩ A contradicts that U(xo) 

∩ A = Φ. This implies the result.  ■ 
The following corollary follows from theoren 2.7 and proposition 2.4.  
Corollary. Let (X,

 
풰 ) be a 

 
풰 -equivalence space so that 

 
∩{U : U

 
ϵ 풰 } = 

 
∆  . Then (X,

 
휏 ) is a  T3-space [1]. 

Theorem. Let (X,
 
풰 ) be a 

 
풰-equivalence space. Then the topological space 

(X,
 
 휏 ) is connected if and only if it admits the trivial 

 
풰-equivalence class {X2}. 

Proof. First suppose X admits the trivial equivalence class, i.e.
 
 풰  = {X2}. We show that X is connected. To see 

this, Let G be open and closed in X (with respect to
 
휏 ) and let G ≠ Φ. We have to show  that G = X. Let x ϵ G. By 

proposition 2.3, there exists U
 
ϵ 풰  such that U(x)

 
⊆ G. Since 

 
풰  is trivial, then U(x) = X. So G =  X. 

So the empty set and the whole set are the only sets in X which are both open and closed and hence X is connected. 
Conversely, assume (X,

 
휏 ) is connected  and U

 
ϵ 풰 . We have to show  that U = X2. Let xo ϵ X. From the definition 

of 
 
휏 , we see immediately that U(xo) is open. Also we show that U(xo) is closed. To do this, it is sufficient to show 

that Ū(xo) 
⊆ U(xo), where Ū(xo) is the closure of U(xo) with respect to

 
휏  [1].  

If z
 
ϵ Ū(xo), then U(z)

 
∩ U(xo) ≠ Φ. Consequently, (xo, z)

 
ϵ U or, z

 
ϵ U(xo). So U(xo) is also closed. So U(xo) = 

Φ or 
U(xo) = X. Since xo 

ϵ U(xo), then U(xo) = X. So U(x) = X for all x
 
ϵ X. Consequently, U = X2. Hence

 
 풰  = {X2}.  ■ 
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Proposition.  Let (X,
 
풰 ) be a 

 
풰-equivalence space and let A

 
⊆ X. Then: 

a) Ā = 
∩{U : U

 
ϵ 풰 }, where Ā  is the closure of A with respect to

 
휏 . 

b) U(A) is closed and open  in X. 
Proof.  a) Let x

 
ϵ Ā and let U

 
ϵ

 
풰  . Then A

 
∩ U(x) ≠ Φ. 

 If 
 
푎

 
ϵ A

 
∩ U(x), then (a, x)

 
ϵ U and henee, x

 
ϵ U(a). So Ā

 
⊆

 
∩{U : U

 
ϵ 풰 }. 

For the other way inclusion, Let x
 
ϵ ∩{U : U

 
ϵ 풰 } and let G be a neighbourhood of xo. By corollary 2.3, there exists 

U
 
ϵ 풰 such that U(x)

 
⊆ G. 

Since x ϵ U(A), then there exists 
 
푎

 
ϵ A such that (a, x)

 
ϵ U. Thus G

 
∩ A ≠ Φ. Hence x

 
ϵ Ā.  This shows  that 

 
∩{U : 

U
 
ϵ 풰 } ⊆ Ā. 

b) Evidently, U(A) is open.  
On the other hand, by using (a), Ū(A) = 

∩ V(U(A)
 
⊆ U(V(A))

 
⊆U(A). The last statement is true, because U is an 

equivalence relation on X. So, U(A) is closed.  ■ 
The following corollary is easily obtained from part (a) of  proposition 2.10.   
Corollary. Let (X,

 
풰 ) be a 

 
풰 -equivalence space. A subset A of X is dense in X (w.r.t 

 
휏 ) If and only if U(A) = X 

for every U
 
ϵ 풰 . 

 
CONTINUITY  
In the theory of 풰-equivalence spaces the structure-preserving functions, in the inverse-image sense, are the 풰-
equivalently continuous functions, defined as follows. 
Definition. Let (X, 풰 ), (Y, 휗 ) be 풰-equivalence spaces, and let  f : X  Y be a function. f is said to be 풰-
equivalently continuous if  f2

-1(V) ϵ 풰  for each V  휗 , where  f2
-1(V) = {(x, y) ϵ X2 | (f(x),  f(y)) ϵ V}. 

Clearly the identity function on any  풰-equivalence space (X,
 
풰 ) is  풰-equivalently continuous. 

Definition. A  풰-equivalence class   풰  is said to be saturated  if  U ϵ 풰   and    U ⊆ V, where V is an equivalence 
relation on X, then V ϵ 풰 .  Also, 풰   is said to be rich if  X2 ϵ 풰 . 

Proposition. Let (X,
 
풰 ) and (Y, ϑ ) be two  풰 -spaces and let  풰  be saturated.  

Then a function f : X  → Y is  풰-equivalently continuous, if for each V ϵ 휗  

 there exists  U ϵ 풰   such that  f2(U) ⊆ V. 
Proof. The ‘only if’ part of the proposition is a simple consequence of definition 3.1. To prove the ‘if’ part, let 
V ϵ 휗 . We will show that f2

-1(V) ϵ 풰 . If  U ϵ 풰  and f2(U) ⊆ V, then U
 
⊆ f2- 1(V). Since V is an equivalence 

relation on Y, then  f2-1(V) is an equivalence relation on X. Now since  풰  is saturated,  f2
-1(V) ϵ 풰  as asserted.  ■ 

Proposition. Let (X,
 
풰 ), (Y, ϑ ) be  풰-equivalence spaces and let  f : X  → Y be  풰-equivalently continuous 

function. Then f is continuous when regarded as a function from topological space X in to topological space Y. 
Definition. The  풰-equivalence space (X,

 
풰 ) is said to be  풰-connected if for each U ϵ 풰 , X2 

= 






1n
Un where Un = 

U o U o…o U (n-times).  
For example, the discrete  풰-equivalence space X is never  풰-connceted provided that the underlying set has at least 
two points. On the other hand, the trivial  풰-equivalence space  is  always  풰-connected. 
Defintion. The  풰-equivalence space (X,

 
풰 ) is  totally bounded if for each U ϵ 풰 , there exist x1, x2, …, xn ϵ X such 

that X = 
n

i


1
U(xi). For example, the trivial  풰-equivalence space is always totally bounded. 

Definition. Let (X,
 
풰 ), (Y, ϑ ) be  풰-equivalently  spaces and f : X  → Y be a function. f  is  said to be  풰-

equivalently open if  for each U ϵ 풰 , there exists V ϵ 휗  such that V(f (x)) ⊆ f (U(x)) for all x  ϵ X. 
Proposition. Let f : X → Y be a  풰-equivalently continuous surjection, where (X,

 
풰 ) and (Y, ϑ ) are  풰-

equivalence spaces. Moreover let X be totally bounded. Then so is  Y. 
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Proof. Let V ϵ 휗 . We claim that there exist y1, y2,…, yn ϵ Y so that Y = 

n

i


1
V(yi). 

Suppose U = f2
-1(V), then U ϵ 풰 , because f is  풰-equivalently continuous. 

Since X is totally bounded, then there exist x1, x2,…, xn ϵ X such that X = 

n

i


1
U(xi). 

 If yi = f(xi), then we will show that Y = 

n

i


1
V(yi). Let  y ϵY. Since f  is surjective, then y = f(x) for some x ϵ X. 

 For i = 1, 2,.., n, let (xi, x)  ϵ  U = f2-1(V), then (f(xi), f(x)) ϵ V. Hence Y = 

n

i


1
V(yi). as asserted.  ■ 

Proposition. Let f : X → Y be a  풰-equivalently continuous surjection, where (X,
 
풰 ) and (Y, ϑ ) are  풰-spaces. If 

X is  풰-connected, then so is Y. 
Proof. Let Vϵ 휗 . Since f is surjection, then so is f2. Since f is  풰-equivalently continuous, then U =  f2

-1(V) ϵ 풰 . So, 
Y2 

= f2(X2) = f2(





1n
Un) = 






1n
 f2 (Un) = 






1n
Vn 

Hence, Y is 풰-connected and the proof is now complete.  ■ 
Poroposition 3.10. Let (X, 풰 ), (Y, 휗 ) and (Z, 퓌 ) be  풰-equivalence spaces and      f : X  Y be a 풰-
equivalently continuous surjection and let  g : Y → Z be a function. 
If  g o f : X  Z is  풰-equivalently, open then so is g.  
Proof. let V ϵ 휗  and U = f2-1(V). Since f is  풰-equivalently  continuous, then U ϵ 풰 . Moreover, since f is 

 
풰-

equivalently open, then there exists W
 
ϵ 퓌  such that  

W((g o f)(x)) ⊆ (g o f)(U( 푥)) for all x ϵ X. We clain that  W(g(y))
 
⊆ g (V(y)) for all y

 
ϵ Y. To see this, let y ϵ Y and 

z ϵ W(g(y)). Since f  is surjection, then y = f(x) for some x ϵ X. So W(g(y))
 
⊆ (g o f) (U(x))     (I). 

Hence by (I), there exists x1 
ϵ X such that (x, x1) ϵ  U, z = g(f(x1)). Let t =  f(x1). Then  z = g(t), (y, t)

 
ϵ V i.e. z

 
ϵ g(V(y)) 

as required.  ■ 

Let us present another classification of saturated 
 
풰-connected  spaces as follows. 

Theorem. In a saturated 
 
풰-equivalence space (X,

 
풰 ) the following statements are equivalent: 

1) X is 
 
풰-connected 

2)  for each discrete space D, every 
 
풰-equivalently continuous function λ : X 

 
→  D is constant. 

Proof. (1)
 
 → (2). Given a 

 
풰-equivalently continuous function λ : X

 
→ D 

Where D is discrete i.e. UD = {V
 
⊆ D2| V is  an equivalence relation on D}.       

Consider the pre-image U = λ2
-1(

 
∆ ) of the diagonal 

 
∆   of  D. Then  U ϵ  풰 , and Un = U  for all n, because  ∆  =  

∆ . Since X is  풰-connected then  X2 = 






1n
Un = U.      

On the other hand, U = {(x1, x2) ϵ X
2 | λ(x1) = λ(x2)}. Hence  λ  is constant. 

(2) → (1).  Suppose that X is not  풰-connected. 
 Then there exists U ϵ  풰   and  xo, yo  ϵ X  such that (xo, yo)  ∉ Un for all n. Taking    D = {0, 1} equipted with discrete 

 풰-equivalence class. 
Define λ : X

 
→ D by λ(x) = 0 when (xo, x) ϵ D

i for some i and λ(x) = 1 otherwise. Hence λ(xo) = 0 and λ(yo) = 1 i.e. λ is 

not constant. We claim that λ  is  풰-equivalently continuous. 
We first show that U ⊆ λ2

-1(
 
∆ ). If this is not so, then there exists (x1, x2) ϵ U,  

λ(x1) ≠ λ(x2). Assume that λ(x1) = 1, λ(x2) = 0. Hence there exists i ϵ N, (xo, x2) ϵ Ui. Consequently, (xo, x1) ϵ Ui+1 

contradicting that λ(x1) = 1. Hence U ⊆ λ2
-1(

 
∆ ). So for each V ϵ 풰 ,  λ2

-1(V) ⊇  λ2
-1(

 
∆ ) ⊇  U. Whence λ2

-1(V) ϵ 풰  

because  풰  is saturated. 
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Hence λ is  풰-equivalently continuous function while it is not constant, that is a contradiction. This proves that X is 

 풰-connected.  ■  
We omit the straightforward proof of the following proposition. 
Proposition. Let (X,

 
풰 ), (Y,  휗 ) be  풰-equivalence spaces where  휗  is saturated.Then a bijection f : X  → Y is 

 풰-equivalently open if  and only if  its inverse is  풰-equivalently continuous. 
Proposition. Let (X,

 
풰 ), (Y, 휗  ) and (Z,  퓌  ) be  풰-equivalence spaces and   f : X → Y be a function and let g : 

Y → Z  be  풰 -equivalently continuous injection. If  g o f  is  풰-equivalently open, then so is  f.  
Poof. Let U ϵ 풰 . Then there exists  W ϵ 퓌 , W(h(x)  ⊆ h(U(x)) for all x  ϵ X where  h = g o f. Since g is  풰-
equivalently continuous, then the pre-image V = g2

-1(W)  is a member of  휗 . Now it is easy to see V(f(x))  ⊆  f(U(x)) 
for all x  ϵ X. it follows that f is  풰 -equivalently open as asserted.  ■ 
Proposition. Let  f : X → Y be a  풰-equivalently open function,  where X is non-empty, (X,

 
풰 ) is rich and (Y, 휗 ) 

is  풰-connected. Then f is surjection. 
Proof. Let U = X2, Then there exists V ϵ 휗  such that V(f(x)) ⊆ f(U(x)) for all x  ϵ X. consequently, V(f(x))  ⊆  f(X)  
for all x  ϵ  X. Hence for each n  and each x ϵ X, 
Vn(f(x)) ⊆ f(X). Let  xo ϵ X and let yo = f(xo). We claim Y =  f(X). 
To see this, let y ϵ Y, then (yo, y) ϵ Y

2 =  





1n
Vn. Hence, y ϵ V

n(f(xo)) for some n. Since Vn(f(xo)) ⊆  f(X), then y ϵ  

f(X). This proves Y =  f(X).   ■ 
Definition. Let f : X

 
→ Y be a map where (X,

 
풰 ) is a 

 
풰-equivalence space and Y is a set. We say that f is 

transverse to X if there exists U ϵ 풰  such that  
U

 
∩ f2-1(

 
∆ ) =

 
 ∆  . By a local 

 
풰 -equivalence we mean, a 

 
풰-equivalently continuous and 

 
풰-equivalently open 

function f : X
 
→ Y, where (X,

 
풰 ) and (Y,

 
휗 ) are 

 
풰-equivalence spaces such that f is transverse to X. 

Proposition. Let f : X
 
→ Y be a 

 
풰-equivalently continuous function. Suppose f admits a left inverse g which is local 

 
풰-equivalence. Then f is

 
풰-equivalently open. 

Proof. Let U
 
ϵ  풰 . Then V1 = g2

-1(U)
 
 ϵ 

 
휗  because g is 

 
풰-equivalently continuous. Since g is transverse to Y, then 

there exists Vo
 
 ϵ  휗  such that Vo

 
∩ g2

-1

 
(∆  ) =

 
 ∆  . Let V2 = (f o g)2

-1(V0). Then since f o g is 
 
풰-equivalently 

continuous, V2
 
 ϵ  휗 . Finally let V = V0 ∩ V1 

 
∩ V2. We claim V(f(x))

 
⊆ f(U(x)) for all x 

 
ϵ X. suppose y

 
ϵ V(f (x)). 

Then (x,   g(y))
 
ϵ U. Finally, we have to show that  f(g(y)) = y. 

 Since (g(y), g(y))
 
ϵ 

 
∆ , then (f(g(y), y)

 
 ϵ  g2

-1

 
(∆ ). 

Also, (y, f(x))
 
ϵ V0 and (f (x), (f(g(y))

 
ϵ V0. Hence, (f(g(y)), y)

  
ϵ V0 . consequently,  (f(g(y)), y)

 
ϵ

 
∆  that means,  

f(g(y)) = y.   ■ 

Proposition. Let f : X
 
→ Y and g : Y

 
→ Z be 

 
풰-equivalently continuous functions, where (X,

 
풰 ), (Y, 

 
휗 ) and 

(Z,
 
퓌 ) are 

 
풰-equivalence spaces g o f is 

 
풰-equivalently open, f is injective and g is transverse to Y. The g o f  is a 

local 
 
풰-equivalence. 

Proof. Since  g is transverse to Y, there exists V
 
ϵ 휗  such that V

 
∩ g2

-1(
 
∆ ) =

 
 ∆ . Let U = f2-1(V). Then U

 
ϵ 풰 . 

Now  we  have to show that U
 
∩ ((g o f)2

-1(
 
∆ ) =

 
 ∆ . 

Clearly,
 
∆

 
⊆ U

 
∩ ((g o f)2

-1(
 
∆ ). For the other way inclusion, let (x1, x2)

 
ϵ U and g(f(x1) = g(f(x2). Then (f(x1), f(x2))

 
ϵ 

V
 
∩ g2

-1(
 
∆ ) =

 
 ∆ . So f(x1) = f(x2) and since f is injective, x1 = x2. Hence U

 
∩ (g o f)2

-1(
 
∆ ) =

 
 ∆ .   ■ 

 

QUOTIENT 
 
퓤 -EQUIVALENCE SPACES 

Let (X,
 
풰 ) be a 

 
풰-equivalence space and let 

 
ℛ be an equivalence relation on X. 
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 Also, let π : X
 
→ X/

 
ℛ  is the function defined by π(x) =

 
ℛ[x], where 

 
ℛ[x] = {y

 
 ϵ X | (x, y)

 
ϵ

 
ℛ}. The function  π is 

called the natural projection. 

Now we ask whether X/
 
ℛ can inherits a 

 
풰-equivalence class from X such that makes the natural projcetion π  

 
풰-

equivalently continuous, and if the answer is yes, then we discuss the relationships between these two spaces. 

Definition. An equivalence relation  ℛ  on a  풰-equivalence space (X,
 
풰 ) is compatible with 풰  if for each 

U
 
ϵ 풰 , ℛ o U = U 

For example, let X be a non-empty set and  ℛ = ∆  Then 
 
ℛ is compatible with {X2}. 

The following lemma is often useful. 
Lemma. Let 

 
ℛ be an equivalence relation on a 

 
풰-equivalence space (X,

 
풰 ). Then the following statements are 

equivalent: 

i) 
 
ℛ is compatible with 

 
풰 . 

ii) For each U
 
ϵ

 
풰 ,

 
 U o ℛ = U. 

iii) For each U
 
ϵ

 
풰 , 

 
ℛ o U o ℛ = U. 

iv) For each U
 
ϵ

 
풰  ,

 
 U o ℛ o U = U. 

Proof. The equivalence of (i) with (ii) is trivial. 
Assume (ii) holds and suppose U

 
ϵ

 
풰 , Then  U o ℛ = U and hence  ℛ o U o ℛ  =  ℛ o U. Since  U o ℛ = U, then the 

equivalence of (i) with (ii) implies  ℛ o U = U. Hence  ℛ o U o ℛ = U.The other parts result by straightforward 
calculations.  ■ 

Theorem. Let ℛ be a compatible equivalence relation on a  풰-equivalence space (X,  풰 ). Then the images of the 
members of  풰  under π2, form a  풰-equivalence class on X / ℛ. We refe to this class as the quotient  풰-epuivalence 
class and to X / ℛ with this structure, as the quotient   풰-equivalence space. 
We recall that X / ℛ is the collection of all equivalence classes  ℛ[X], and π2 (x, y) = 
(π(x), π(y)) = ( ℛ[x], ℛ[y]) 

Proof. Let  풰


denotes this collection i.e. 풰


= {π2(U) | U ϵ 풰 } . 
We first show each member of  풰  is an equivalence relation on X / ℛ. Let                  V = π2(U) where U ϵ 풰  and 
let  x ϵ X. 
Then ( ℛ[x], ℛ[x]) = π2(x, x) and (x,x) ϵ  ∆   ⊆ U. Hence  ∆  /

 
ℛ  ⊆ V and so V is reflexive. Clearly V is symmetric. 

Now we show that V is transitive. 
 Let (

 
ℛ[x], ℛ[y]) ϵ V and let ( ℛ[y], ℛ[z]) ϵ V. Then ( ℛ[x], ℛ[y]) = (  ℛ [t1], ℛ [t2])), (t1, t2)  ϵ U. Also ( ℛ[y], ℛ[z]) = 

( ℛ(u1),  ℛ(u2]), (u1, u2) ϵ U. 
Hence ( ℛ[x], ℛ[z]) = ( ℛ[t1], ℛ[u2]). Since (t1, t2) ϵ U, (t2, u1) ϵ ℛ  and (u1, u2) ϵ U, then (t1, u2) ϵ  U o ℛ o U. Now 
compatibility of  ℛ with  풰 , implies  (t1, u2) ϵ U. Hence ( ℛ [x], ℛ[z]) = π2(t1, u2), (t1, u2) ϵ

 U. 
So  ( ℛ[x], ℛ[z]) ϵ π2(U) = V. Whence V is transitive. 
Finally, We show that the intersection of two members of  풰


 is a member of  풰 . Let V1 = π2(U1) and V2 = 

π2(U2), where U1, U2 ϵ  풰 , be two members of  풰


.  
We contend that V1 ∩ V2  = π2(U1 ∩ U2) which shows that V1 ∩V2 ϵ  풰


 

 Clearly π2(U1 ∩
 U2) ⊆ π2(U1) ∩ π2(U2). Now let ( ℛ[x], ℛ[y]) ϵ π2(U1) ∩ π2(U2). 

 Then ( ℛ[x], ℛ[y]) = ( ℛ[t1], ℛ [t2]), (t1, t2) ϵ U1  
                                = ( ℛ[u1], ℛ[u2]), (u1, u2) ϵ U2. 
Consequently, ( ℛ[x], ℛ[y]) = ( ℛ[t1], ℛ[u2]. But (t1, u2) ϵ  ℛ O U2 = U2 and, 
(t1, u2) ϵ U1 O ℛ = U1. Hence, ( ℛ[x], ℛ[y]) = (  ℛ[t1], ℛ[u2]), (t1, u2) ϵ U1 ∩ U2. So ( ℛ[x], ℛ[y]) ϵ π2(U1 ∩ U2). Hence, 
π2(U1 ∩ U2) = π2(U1) ∩ π2(U2).   ■ 
Theorem. Let  ℛ be an equivalence relation on X , compatible with  풰  where (X, 풰 ) is a  풰-equivalence space. 
Then π  is  풰-equivalently continuous and  풰-equivalently open. 
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Proof. We first show that π is  풰-equivalently open. Let  U ϵ 풰  and V = π2(U). Then V
 
ϵ 풰


. We claim that V(π 

(x)) ⊆ π(U(x)) for all x  ϵ X. 
 Let x  ϵ X and let  ℛ[t] ϵ V(π (x)) = V( ℛ[x]) We will show there exists u ϵ X such that  ℛ[t] = ℛ[u] and (x, u) ϵ U.  
Since R[t] ϵV[ ℛ[x]], then there exists (t1, t2) ϵ U such that ( ℛ[x], ℛ[t]) = ( ℛ [t1], ℛ[t2]). Hence  ℛ[t] =  ℛ[t2] and (x, 
t2)  ϵ  ℛ o U = U. let u = t2. Then R[t] = R[u] and (x, u) ϵ U as required. 
Now we prove that π is  풰-equivalently continuous. Let V ϵ 풰


. We show  that 

π2
-1(V) ϵ 풰 . There exists U ϵ 풰  such that V = π2(U). On one hand we have π2

-1(V) = π2
-1(π2(U)) ⊇ U. On the other 

hand, if (x1, x2) ϵ π2
-1(V), then ( ℛ[x1], ℛ[x2]) = ( ℛ[t1], ℛ[t2]), (t1, t2) ϵ U. Hence (x1, x2) ϵ  ℛ o U o ℛ = U.  

So π2
-1(V)  ⊆ U. And hence π2

-1(V) = U ϵ 풰 .   
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