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ABSTRACT 
 

Strain-softening causes localization of the strain which is accompanied by an instantaneous vanishing of 
the stress. If the modeling approach for strain localization with softening does not contain a material length-
scale parameter, the numerical simulation suffers from the excessive mesh dependence. The nonlocal 
continuum concept has emerged as an effective means for regularizing the boundary value problems with 
strain softening. In this paper, the calculations were carried out with integral type nonlocal constitutive law 
to model properly the shear zone formation. For nonlocal plasticity, element size had a critical effect on the 
solution. Sufficiently refined meshes were required for an accurate solution without mesh dependency. The 
XFEM method was employed for simulation of high strain gradient in the localization band. It was shown 
that an extended finite element method can be applied to the problem to decrease the required mesh density 
close to the localization band. A new method based on the local bifurcation theory was proposed for the 
initiation and growth criterion of the strain localization interface. In the case of non associated constitutive 
model, the criterion for bifurcation was reduced to the singularity of the symmetric part of the acoustic 
tensor. Finally, the ability of the presented model to describe the behavior of granular materials was 
demonstrated by comparisons of the results of numerical calculations and drained biaxial tests on dense 
Hostun sand. Attention was laid on the effect of the regularization technique on the load–displacement 
curve and shear zone orientation. The calculated load–displacement curves coincided very well with 
experiment. In addition, the influence of mean effective stress was investigated. It was shown that when 
increasing the confining stress, the onset of strain localization was delayed. Shear band orientation were 
obtained similarly to those observed experimentally. The contours of symmetric part of the acoustic tensor 
indicated that shear banding initiated at, or shortly before peak. 
KEYWORDS: XFEM, Nonlocal plasticity, Shear band localization, Shear band orientation, Mean 

effective stress, Biaxial tests, Dense sand 
 

1- INTRODUCTION 
 
Strain localization refers to the localization of deformation into thin zones of intense shearing. It has 

been realized that strain localization affects bearing capacity of structures. Strain localization is often 
treated as strain softening in continuum mechanics. It was mentioned in the literature that classical 
continuum mechanics cannot correctly predict strain localization and softening behavior. Strain softening, 
when incorporated in a computational model, exhibits undesirable characteristics. So, reliable predictions 
of the bearing capacity are not possible in the framework of classical or local continuum theory. When 
localization or material softening occurs, the governing static equations lose ellipticity or the governing 
dynamic equations lose hyperbolicity (onset of bifurcation) [1, 2]. Loss of ellipticity corresponds to a 
situation in which either the number of linearly independent solutions to the equilibrium equations is 
infinite and (or) these solutions do not depend continuously on the data [3]. Therefore, the initial value 
problem becomes mathematically ill-posed. This implies a strong dependence of the shear band width on 
the spatial discretization. This inefficiency is due to the fact that classical continuum mechanics has no 
material length scale parameter [4]. As a result, by refining the mesh, the plastic strain is localized in a 
narrower region.  To overcome this unphysical behavior, micro-polar models [5], higher-order gradient 
models [6], visco-plasticity [7] and integral-type nonlocal plasticity models [8, 9] are commonly used. 

The approach used here is the mixed XFEM and integral type nonlocal model which is based on the 
assumption that stress at a point is determined not only by the current values and the previous history of 
deformation at that point but also by the state of its neighboring points. The first application of the integral-
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type nonlocal model into plasticity was made by Eringen [10, 11]. Pijaudier-Cabot and Bazant [12] and 
Bazant and Lin [13] applied the nonlocal operator only to those parameters which control the softening 
process. Finite element implementation of nonlocal plasticity was presented by Stromberg and Ristinmaa 
[14], Brunig et al. [15],  Maier [16, 17] and Tejchman [18]. Jirasek [19] presented an overview of the 
integral-type nonlocal model for damage and fracture, Bazant and Jirasek [20] did for plasticity and 
damage, and Jirasek and Rolshoven [4] did for plasticity. The mathematical foundation of the XFEM was 
discussed by Melenk and Babuska [21]. The first application of XFEM to crack growth problems was done 
by Belytschko and Black [22]. The advantage of this technique is its independency of the crack geometry 
on the mesh. Fries and Belytschko [23] provided an overview of XFEM applications. This numerical 
technique has been used to simulate shear bands and strain localization [24-29]. 

The objective of this paper is to investigate and provide insight into the localization phenomenon in 
dense sand under fully drained conditions. Most of the literature about nonlocal models deals with their 
mechanical and numerical implementation. But in order to judge the ability of a model to describe the 
mechanical behavior of a material comparisons of numerical calculations with results of laboratory tests are 
necessary. These are very rarely found in literature. The results of biaxial tests on dense Hostun RF sand 
[30, 31] are predicted and so the ability of the proposed model to describe the mechanical behavior of 
granular materials demonstrated. The analysis is performed with extended finite element method on the 
basis of the integral type nonlocal model. During calculations, the emphasis is placed on the orientation of 
the localization zone, the effect of the mean stress and the evolution of localization band.  

It is well known that dense sand, especially when tested in plane strain condition, show early strain 
localization, with severe overall strength reduction immediately after the onset of localization. In the 
present paper, a new method based on the local bifurcation theory is proposed for the initiation and growth 
criterion of the strain localization interface. Strain localization starts when the ellipticity conditions of the 
static equation or the hyperbolicity of the dynamic equation are lost (onset of bifurcation) [13, 32]. In the 
case of non associated constitutive model, this condition is equivalent to zero or the negative determinant of 
the symmetric part of the acoustic tensor. Zarinfar and Kalantary [9] proposed the similar numerical 
algorithm for associated constitutive model. Therefore, the singularity of the symmetric part of the acoustic 
tensor was considered as the onset condition of strain localization (local bifurcation criterion) [33-37]. 
When using the local bifurcation theory and XFEM, the softening zone initiation locus does not need to be 
known in advance. Strain localization begins at the first point in which the local criterion of bifurcation is 
satisfied (singularity of acoustic tensor). Moreover, the strain localization interface progresses are obtained 
independently from the mesh. With continued loading, local criterion of bifurcation is satisfied in more 
points and thereafter strain localization grows inside the body. 

In summery, the scientific contributions of this paper are 1) a new method based on the local 
bifurcation theory is proposed for the initiation and growth criterion of the strain localization interface for 
non associated constitutive model 2) nonlocal theory is combined with XFEM for reduction of 
computational effort and mesh dependency 3) the localization phenomenon in dense sand under fully 
drained conditions is investigated. 

The paper is organized as follows: first in section 2, integral type nonlocal is briefly recalled, in 
section 3, governing equations are briefly recalled and XFEM is applied to the governing equations, in 
section 4, a new method for the initiation and growth criterion of the strain localization interface is 
discussed, Finally, in section 5, the performance of the nonlocal formulation and mixed nonlocal-XFEM 
formulation are compared and the results of biaxial tests on dense Hostun RF sand are predicted to 
demonstrate the efficiency of the proposed model in shear band localization modeling without mesh 
dependency. 
 
2. Integral type nonlocal model 

Nonlocal continuum theory uses integral averaging of the variable around its neighborhood, instead of 
a local definition. For example, nonlocal averaging of plastic strain tensor ( p

ijε ) at location x may be 

defined by the local plastic strain tensor ( p
ijε ). 

      V
p
ij

p
ij dVε,αε ξξxx)(  (1) 

where V denotes volume of the body, ),( ξxα is suitable weighting function. In this paper Gaussian 
distribution function is used as a weighting function. 
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in which γ is a scalar which is related to material length scale parameter. For numerical finite element 
computation, nonlocal plastic strain tensor can be written as follow: 

    
k

kk,)( xxxx p
ij

p
ij εαε  (3) 

where k denotes gauss points which are closer to point x than 2γ. The value of ),( ξxα for gauss points with 
greater distance than 2γ is negligible. 
In this paper, equation 4 is used to calculate the effective stress vector. 

pepee εDεDεDσ  mm  )(1  (4) 
where De is linear elastic matrix and m is a constant parameter. Using equation 4, the stress rate at a certain 
point is related to the plastic strain rate in its neighborhood. The formulation presented by Bazant and Lin 
[13] is a special case of equation 4 where m is considered to be 1. Local plastic strain rate is obtained by 
equation 5. 

σ
εp





Fλ  (5) 

where λ  denotes the plastic multiplier and F the yield function which can be defined 
as: 0κ)f(κ)(  σσ,F  in which κ is the hardening-softening parameter. Applying the consistency 

condition to the yield function, pε  can be calculated as:
  

   
εε

σDσ
Dσσε e

e
 


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

FF
FF
T

T
p

H
 (6) 

where H denotes the plastic tangential modulus and is equal to ))(( pκ/κF/ ε . Finally, stress rate at 
gauss point k can be defined by: 

    






  l
l

lklkkkkk εxxΛDεΛIDσ   ,αm m)(1 ee  (7) 

where I is identity matrix and l denotes gauss points which are closer to gauss point k than 2γ.  
 
2. Integral type nonlocal model enhanced by XFEM 
XFEM improves the description of the displacement field inside the localized zone by adding the special 
enrichment functions which can model high gradient of displacement field. These functions and their 
gradients must be similar to the profile of displacement and strain fields. The approximation of 
displacement (u) can be expressed as follow: 

       
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ti
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it, NNψψRNN )()()()()()()()()()()( [ aua]uu xxxxxxxx  (8) 

where u
nodn  denotes the number of element nodes, u

iN  the standard finite element shape function 
associated with node i, iu  the standard nodal displacement, ia  the additional degrees of freedom (DOF) 
associated with node i. In the above relation, ψ(x) denotes the appropriate enrichment function and φ(x) is 
the distance from the strain localization interface. R(x) is the ramp function which resolves difficulties in 
blending elements [23]. In this study, the hyperbolic tangent is employed to describe the corresponding 
profiles. This function is defined as: 

 β2φ tanhψφ(x) x)(  (9) 
where β is the parameter which controls width of the shear band. By selecting several values of β, one can 
construct a series of enrichment functions describing the displacement profile near the strain localization 
interface. By substituting equation (8) in to strain rate definition, strain matrix can be defined as: 

 

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The governing equation in an updated Lagrangian framework is a linear momentum balance equation.  

0div  buσ ρρ   (12) 
where σ is the stress, b refers to the body force and ρ is the density. The Dirichlet boundary condition 
is uu  on Γ=Γu. The Neumann boundary conditions is tσnt  on Γ=Γt. To obtain the weak form of the 
governing equations, Galerkin’s procedure is used. The test functions δ�u(x,t) which has the same form as 
u is multiplied by equations (12) and integrated over the domain Ω. Using the Divergence theorem leads to 
the following equation as: 
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The governing equations (13) are discretised in the time domain by means of the Newmark’s scheme.  
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In above equation, Ψ denotes the vector of known values at time t and K is the tangential stiffness matrix. 
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where D is the appropriate constitutive matrix. The non-linear coupled equation system is linearised in a 
standard way thus yielding the linear algebraic equation system 16 which can be solved using an 
appropriate approach, such as the Newton-Raphson procedure. 
The tangent stiffness matrix for integral type nonlocal plasticity enhanced by XFEM for a specified element 
can be obtained as follow: 
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where J  is determinant of Jacobian matrix and Wk denotes weight coefficient of the gaussian quadrature. 
If the second and third terms in equation 19 are ignored, the formulation becomes equivalent to local 
theory. The DOF of one element may become related to the DOF of a non-neighboring element because of 
the third term of equation 19. In conclusion, the nonzero components of the tangent stiffness matrix 
increase. In this situation, the tangent stiffness matrix is not symmetrical because α'(xk, xl) ≠ α'(xl, xk). 
 
4. Initiation and growth criterion of the strain localization interface  
This study proposed the local bifurcation criterion to locate strain localization interface. Zarinfar and 
Kalantary [9] proposed the similar numerical algorithm for associated constitutive model. But in the case of 
a non associated constitutive model, this criterion coincides with the singularity of the symmetric part of 
the acoustic tensor [2, 35]. Acoustic tensor can be defined as: 

lk
ep
ikjlij nnCA   (20) 

where n is a unit vector and ep
ikjlC denotes local elastoplastic constitutive tensor. 

 tu
e
rsturs

pq
e
pqjlmn

e
ikmne

ikjl
ep
ikjl σFCσFH

σFCσFC
CC




  (21) 

If there is a direction in which the determinant of the symmetric part of the acoustic tensor becomes 
zero or negative, strain localization probably starts, and XFEM must be used to approximate the 
displacement field. At each Gauss point, then, a direction must be found in which the determinant of the 
symmetric part of the acoustic tensor has the lowest value. One independent variable is sufficient to 
describe unit vector n in two-dimensional space. As a result, the determinant is a function of one variable, 
and its lowest value can easily be calculated. This approach allows us to identify points where strain 
localization is likely to occur.  

In order to perform the numerical algorithm, it is assumed that the interface, i.e. the centerline of the 
localization zone, and the Gauss points which have a negative determinant of the symmetric part of the 
acoustic tensor are known at time t (Fig. 1). Moreover, the vector V corresponding to the minimum 
determinant of the symmetric part of the acoustic tensor at the last point of the interface, i.e. L, is known at 
time t.  

The vector V’ is plotted from L to the Gauss point which has a negative determinant, i.e. G. Then the 
angle between V and V’ is obtained. The next point for the centerline of the localization zone is a Gauss 
point whose corresponding vector V’ has a minimum angle with V. Once the new interface is detected, 
additional DOF are activated at every nodal point whose support has an intersection with the enriched zone. 
If convergency is obtained at the end of the increment, the evolution of shear band is carried out to obtain 
the new interface for the next loading step. This technique is simple and has been employed in the 
examples. To avoid doubling back on the original path, the angle between the pieces of strain localization 
interface must be less than 90 degrees. 
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Fig.1 numerical computation for the evolution of 

localization band at step n 
Fig.2 decomposition of the elements into sub-

elements at step n and n + 1 
 
5. Numerical simulation 

A computer program has been developed to investigate the computational aspects of the XFEM model 
in a higher order continuum model. The finite element mesh employed in all simulations was eight-noded 
rectangular plane strain elements with nine integration points. The analysis starts with the standard FE 
model with no enrichment functions. The enrichment function is then implemented into the standard shape 
functions by tracing the evolution of shear band zone. The parameter β, which is defined the width of 
enrichment zone, is set to γ in all analyzes due to the fact that the shear band thickness is about γ. All 
elements closer to the strain localization interface than β are enriched by the hyperbolic tangent function. 

For integration purposes, a decomposition of the elements into sub-elements that align with the 
interface is standard in the XFEM [23]. In the case of a rectangular element, the elements located on the 
interface were partitioned using triangular sub-elements (Fig. 2a) and 24 Gauss quadrature points were used 
for the elements cut by the shear band interface. For standard FE elements, a set of 3×3 Gauss points were 
used for numerical integration. If an interface surface was added during the evolution of the shear band 
zone (Fig. 2b), the number of Gauss quadrature points for an element may differ before and after each 
increment. In this case, the value of the stresses can be determined at the standard FE Gauss points of an 
element. To obtain these values at the Gauss quadrature points of sub-triangles, a simple interpolation on a 
support domain for each triangular Gauss point consisting of the three nearest standard FE Gauss points 
was used. The required stress value can be determined using a simple interpolation. 
 
5.1. Plane strain strip in tension 

In this example, the performance of the nonlocal formulation and mixed nonlocal-XFEM formulation 
were compared. The geometry, boundary conditions and material parameters are shown in Fig. 3. The 
shaded area in Fig 3 represents the weak inclusion. The parameter γ was set to 1cm and m was set to 1.5 to 
obtain the shear band thickness equal to 1.3 cm. In order to show the capability of the nonlocal extension 
with XFEM, numerical results obtained using different meshes are presented. The meshes consisted of 96, 
384 and 651 four-node. 

The results of the nonlocal and mixed XFEM-nonlocal formulation are shown in Fig 4 and 5. These 
figures present the nonlocal effective plastic strain contours for both formulations. As seen in Fig 4, the 
results for coarse mesh are different than for other mesh results in the nonlocal formulation. In the proposed 
approach, good agreement can be observed between the three mesh sizes; therefore, the XFEM can be 
applied to the problem to decrease the required mesh density close to the of the localization band. These 
figures confirm that mixed XFEM-nonlocal technique gives good prediction of localization even for the 
coarse mesh. As seen, there is a good agreement between the results of the proposed approach for different 
meshes i.e. the width and inclination of the shear band are independent of the element size. 
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Fig.3 The plane strain strip in tension; the geometry, boundary conditions, and material properties 
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Fig.5 the nonlocal effective plastic strain contours for mixed XFEM-nonlocal model; a) coarse mesh b) 
medium mesh c) fine mesh 
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5.3. Simulation of plane strain biaxial tests on dense Hostun RF sand 
In the following the results of plane strain biaxial tests on dense Hostun RF sand performed by 

Desrues and Hammad [30] will be compared with numerical calculations done with the integral type 
nonlocal model enhanced by XFEM. Numerical calculations of plane strain compression tests were 
performed with a specimen which was 34 cm high and 10 cm wide. The stress–strain curve, geometry and 
boundary condition of biaxial test are shown in Fig. 6. Axial compression is applied to the specimen by 
vertical velocity (1.2mm/min) of the top nodes. A Drucker-Prager yield criterion and isotropic linear 
softening is used. The weak imperfection is introduced in the top right part of the specimen to trigger 
numerically a shear band. The imperfection has got the size of four elements. The initial apparent cohesion 
of this zone is assumed be equal to 60 percent of the apparent cohesion in other parts of the specimen. The 
material parameters used during the computations are Poisson's ratio υ= 0.4, solid grain density ρs =2000 
kg/m3, water density ρw=998.2 kg/m3, Linear softening modulus H=-15MPa, solid grain bulk modulus Ks= 
6.78 GPa, water bulk modulus Kw= 0.20 GPa. The Angle of internal friction and dilatancy are exactly the 
same as in Refs [30, 31]. Table 1 lists other parameters which are obtained by calibration. The parameter γ 
is set to 1cm and m is set to 1.5. 

Fig. 7 shows the calculated normalized stress–strain curve in comparison with the experimentally 
obtained curves. The investigated range of confining pressure stress is 100–800KPa for dense RF Hostun 
sand. The calculated curves coincide very well. Only the nonlinearity of the initial stiffness is underestimated 
in the calculations. The stress drop after reaching the peak can also be seen in the calculation. It is apparent 
that when increasing the confining stress, the onset of strain localization is delayed, as observed for dense 
sand. Moreover, the peak value of stress ratio clearly depends on the confining stress. As in the laboratory 
tests, in the numerical simulation, the shear band starts from the top of the specimen. The development of 
shear band is shown by the contours of symmetric part of the acoustic tensor depicted in Figs 7. The onset of 
localization and the development of a complete localization inside the specimens are clearly revealed by the 
determinant of the symmetric part of the acoustic tensor. The pattern of the shear band is similar to what was 
observed in the laboratory tests [31]. The contours of symmetric part of the acoustic tensor indicated that shear 
banding initiates at, or shortly before peak. The stress drop is associated with the complete development of a 
shear band. Figure 8 presents the sequence of incremental effective plastic strain contours during a drained 
test on dense Hostun RF sand under 100KPa confining pressure. The calculated shear band inclination is 
determined from the distribution of the effective plastic strain (Figure 9). In the calculations the shear band 
thickness does not change with increasing confining pressure. In table 2, the numerically obtained shear band 
orientations are compared with the experimentally obtained shear band orientation. This is in accordance with 
the observations of Desrues and Viggiani [2] for biaxisal tests on different dense sands. The inclination of the 
shear zone increases with increasing mean stress level. Figure 10 presents the sequence of incremental 
displacement vectors during a drained test on dense Hostun RF sand under 100KPa confining pressure. 
Between axial displacement of 1.5 and 2 cm, the deformation clearly consists of nearly undeformed portions 
of the specimen sliding over each other. The effective plastic strain along a vertical (central) cross-section and 
for different deformations is shown in Fig 11. Maximum effective plastic strain value decreased as confining 
pressure stress increased. 
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Fig.6 The biaxial specimen; (a) The geometry and boundary conditions, (b) the stress–strain curve 
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Table 1 Material parameters used in the computation 
 

3   Young modulus(E) apparent cohesion (c0) 

drained test on dense sand 100KPa 2000 MPa 1 MPa 
drained test on dense sand 200KPa 2500 MPa 2.5 MPa 
drained test on dense sand 400KPa 2750 MPa 5 MPa 
drained test on dense sand 800KPa 4000 MPa 8.5 MPa 
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Fig.7 Experimental and numerical load-displacement curve and contours of symmetric part of the acoustic 

tensor for dense sand under (a) 100KPa (b) 200KPa (c) 400KPa (d) 800KPa confining pressure  
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Fig.8 The effective plastic strain contours at different deformations for dense sand under 100KPa confining 

pressure; (a) Δδ=1.2cm (b) Δδ=1.5cm (c) Δδ=2cm 
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Fig.9 the effective plastic strain contour and orientation of the shear band for dense sand under (a) 100KPa 
(b) 200KPa (c) 400KPa (d) 800KPa confining pressure 

 
Table 2 Numerically and experimentally obtained shear band orientation 

3   numerically obtained orientation experimentally obtained orientation [3] 

100KPa 23 21 
200KPa 24 24.5 
400KPa 25 25.5 
800KPa 30 30 

 
a b c d e

 
 

Fig.10 Incremental displacement vectors for dense sand under 100KPa confining pressure; (a) Δδ=.8cm (b) 
Δδ=1cm (c) Δδ=1.2cm (d) Δδ=1.5cm (e) Δδ=2cm 
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Fig.11 The effective plastic strain along a vertical cross section through the centre for dense sand under (a) 

100KPa (b) 200KPa (c) 400KPa (d) 800KPa confining pressure 
 
6. Conclusion 

 
The integral type nonlocal model enhanced by XFEM method for granular materials like e.g. sands 

was presented by introducing a nonlocal plastic strain into the stress-strain relation. The numerical 
calculations of a plane strain compression test that the mesh dependence in classical continuum mechanics 
was remedied using the integral type nonlocal model enhanced by XFEM method. In section 2, The 
nonlocal model of Bazant and Lin [13] was extended. In section 3, governing equations were briefly 
recalled and XFEM was applied to the governing equations. Approximation of the displacement field in the 
localization band was improved by incorporating a set of special enrichments. The tangent stiffness matrix 
was derived for the mixed XFEM-integral type nonlocal formulation. Standard FE analysis was first 
employed with no enrichment functions to perform the numerical simulation. The enrichment functions 
were then incorporated into the standard shape functions after the evolution of the localization band.  

In section 4, a new method based on the local bifurcation theory was proposed for the initiation and 
growth criterion of the strain localization interface. When using this method, the softening zone initiation 
locus did not need to be known in advance. In section 5-1, It was shown that the nonlocal model preserved 
the well-posedness of the governing equations in the post-localization regime and prevented pathological 
mesh sensitivity of the numerical results if the size of the element was smaller than γ/2. The mixed XFEM-
nonlocal model guaranteed mesh independence even if the size of the elements was larger than γ/2. In the 
other words, coarser mesh can be used for XFEM combined with a nonlocal model than when using only a 
nonlocal model. The computational effort required for the mixed XFEM-nonlocal model was less than for 
the nonlocal formulation because coarser mesh can be used in simulation. In section 5-2, the ability of the 
proposed model to describe the behavior of granular materials was demonstrated by comparisons of the 
results of numerical calculations and biaxial tests on dense Hostun RF sand. The calculated stress-strain 
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curve as well as the shear band inclination corresponded very well with the experimental results. The 
singularity of the symmetric part of the acoustic tensor was considered as the onset condition of strain 
localization. It was shown that, the initiation of the localization took place before the peak in the overall 
stress strain curve. The shear band was not simultaneously initiated at every point, but it propagated from 
an initiation point with a constant direction. Based on the results of the numerical simulation presented 
herein, the following conclusions can be drawn concerning drained compression of dense Hostun RF sand. 
1- The onset of the localization in form of shear bands was significantly affected by the confining pressure 
level. The localization was retarded by increasing mean stress level. 2- The orientation of shear zones 
increased with increasing pressure level. 3- The peak value of stress ratio clearly depended on the confining 
stress.4- The use of the determinant of the symmetric part of the acoustic tensor allowed for representing 
the evolution of localized deformation 5- In the calculations the shear band thickness does not change with 
increasing confining pressure. 6- The numerical calculations shown that shear localization in granular 
bodies can be studied with the integral type nonlocal model enhanced by XFEM method. 
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